

EyeSimplify

Overview

- A Programming Project
by

Susanne Manke
Ruprecht-Karls-University

Department of Computational Linguistics
(manke@cl.uni-heidelberg.de)

January 2007

Supervisors:
Dr.Markus Demleitner, Dr.Anke Holler

In Coorporation with:
Dr. Lisa Irmen, Institute of Psychology,
Heidelberg

In Correspondence with:
Charles Clifton, Psychology Department,
Tobin Hall, University of Massachusetts,
Amherst

EyeSimplify – Documentation
by Susanne Manke

2

Abstract

This documentation provides information about the EyeSimplify program, written by
Susanne Manke. The EyeSimplify program is a framework for processing eyetracking
.edf files to an analysis textfile representing four standard eye movement
measurements: First Fixation(“ff”), First Pass (“fp”), Total Time of Fixations (“total
time”/ “tt”) and First Pass Regressions Out (“rout”).

It is an overall project documentation, but it does not include any information about
project history. Further information and all documentary files can be found in the final
talk about the project and on the project’s website:
http://www.cl.uni-heidelberg.de/~manke/bba.htm.

Furthermore, it is not an user’s guide. This is provided in a separate file.

http://www.cl.uni-heidelberg.de/%7Emanke/bba.htm

EyeSimplify – Documentation
by Susanne Manke

3

Content

Abstract .. 2

1. Program Introduction – Conceptual Level ... 4

1.1 Before EyeSimplify: What needs to be done... 4

1.2 EyeSimplify: What is done .. 6

2. Program Introduction – Implementation Level ... 8

2.1 Programs used for Development on Windows XP .. 8

2.2 Programs based on Development... 8

2.3 Selected Methods explained ... 9

2.3.1 The EyeSimplify – class ... 9

2.3.2 The Edf2Asc – class... 9

2.3.3 The AddReg – class ... 9

2.3.4 The Edprep – class... 10

2.3.5 The EyedryGUI – class... 10

2.3.6 The EyedryAna – class... 11

2.4 Exception Handling ... 13

3. Testing.. 14

3.1 During Development – Functionality Tests.. 14

3.2 Final Regression Test .. 14

4. Evaluation... 15

4.1 Evaluation Plan ... 15

4.2 Results .. 19

5. Learned Lessions ... 20

5.1 The Project itself ... 20

5.2 The Development.. 20

7. Plan for Version 2.0 .. 21

7.1 Final Tests – Usability ... 21

7.2 Debugging... 21

7.2.1 Problems with Tkinter and Windows XP, and PMW 21

7.2.2 The output from ES differs from the output of ED..................................... 21

7.3 Adding Features.. 21

Thank You .. 22

1. Program Introduction – Conceptual Level
This section gives an overview about the process of analysing eyetracking
data.

 1.1 Before EyeSimplify: What needs to be done

 Phase 1. Prepare eyetracking data:

EDF2ASCII
v.1.0.0.1

manually

*.EDF

Converting .edf to .asc *.ASC

Clean up eyetracking data
EYEDOCTOR
v.0.5.0 *.EDD *.DA1

Export

*.DEL

EDPREP60
v.01/08/05 *.CNT

*.DA1, *.CNT,
*.LST

Get information about
regions

List up all .da1 files

manually *.LST

Add regions to .script file
and rename it to .del

EyeSimplify – Documentation
by Susanne Manke

4

Phase 2. Prepare for analysis and perform analysis:

(*.CTL),
*.DA1, *.CNT,
*.LST

Load data list

file (.lst)
Files

correct ?

no

yes

Load control
information file
(.ctl)

Logging
(.tra) *.TRA

Load regions x

cond. no. file

(.cnt)

Reg. =
Reg. in
CTL?

no

yes

Analysis

*.TXT

Info

correct?

no

EyeSimplify – Documentation
by Susanne Manke

5

1.2 EyeSimplify: What is done

Phase 1.

EDF2ASCII
v.1.0.0.1

manually

*.EDF

Converting .edf to .asc *.ASC

Clean up eyetracking data
EYEDOCTOR
v.0.5.0 *.EDD *.DA1

Export

*.DEL

EDPREP60
v.01/08/05 *.CNT

*.DA1, *.CNT,
*.LST

Get information about
regions

List up all .da1 files

manually *.LST

Add regions to .script file
and rename it to .del

Integrated & implemented
in Framework:

internal program, new
implementation

internal Editor for
manually adding
regions

internal, done semi –
automatically within
“Eyedry” -component

external program, but
deeply included in
framework

external program, but
included in framework

EyeSimplify – Documentation
by Susanne Manke

6

Phase 2.

(*.CTL),
*.DA1, *.CNT,
*.LST

Load data list

file (.lst)
Files

correct ?

no

yes

Load control
information file
(.ctl)

Logging
(.tra) *.TRA

Load regions x

cond. no. file

(.cnt)

Reg. =
Reg. in
CTL?

no

yes

Analysis

*.TXT

Info

correct?

no

Eyedry as new implementation: First
Fixation, First Pass, Total Time. Planned:
First Pass Regressions Out and Second Pass.

EyeSimplify – Documentation
by Susanne Manke

7

2. Program Introduction – Implementation Level

This chart shows the EyeSimplify program with its modules:

EyeSimplify – Documentation
by Susanne Manke

8

EyeSimplify

main class

AddReg

Adding Regions -Editor

Edf2Asc

Converting edf to asc

Edprep

Get region info data

EyedryGUI

GUI for Analysis

EyedryAna

Functionality for Analysis

EyedryGUI.py

EyedryAna.py

AddReg.py

Edprep.py

Edf2Asc.py

EyeSimplify.py

2.1 Programs used for Development on Windows XP
 Programming Language: Python 2.4.4
 GUI: Tkinter and Python Mega Widgets (PMW) 2.4
 IDE: Python IDLE
 Texteditor: Textpad 4.7.3 (unregistered)

2.2 Programs based on Development
 EDF2ASC (DOS-based version)
 Eyedoctor 0.5.0
 EDPREP60
 Eyedry

These programs were partly available as C – source code.

EyeSimplify – Documentation
by Susanne Manke

9

2.3 Selected Methods explained
This section gives additional information to some methods.
Please look at the embedded documentation and its corresponding
pydoc – documentation for more information.

2.3.1 The EyeSimplify – class
EyeSimplify is the main class. It uses all other modules and partly
represents the main GUI for Microsoft Windows.

All methods are self-explanatory (or with embedded doc).

If you want to add several links to a tab, just use this code snippet:

 def showEyedryGUITab (self):
 self.nb.selectpage(5)

What is planned for version 2.0:
Use wxPython for GUI implementation.

2.3.2 The Edf2Asc – class
Edf2Asc is the module to convert an .edf file to an .asc file.The
DOS-based tool EDF2ASC runs in background and will be started
automatically. The .asc files are needed for later processing.

def convert(self):
Takes arguments given by user: .edf file and future .asc filename
and run this with command – line tool Edf2Asc.exe

Due to some constraints by Edf2Asc, the chosen .edf file is copied
temporarly (as tmp.edf) in the working directory and removed later
on.

 What is planned for version 2.0:

Implementation of a GUI for Edf2Asc, which enables the user to
add more options to the conversion, e.g. left/right eye or batch
process for converting more than one .edf file.

2.3.3 The AddReg – class
AddReg is an “editor” to view the .script file or .del file and add the
delimiter characters to it and save the file. You can also use any
other text editor, but that one included should fasten analysis
preparation steps.

def openFile(self):
If you want to get the content of a PMW ScrolledText – widget, a
special method is needed. importfile(file) .

EyeSimplify – Documentation
by Susanne Manke

10

 What is planned for version 2.0:
 Improve Editor: Highlight the delimiter characters.

2.3.4 The Edprep – class
Edprep writes the region info from delimited .script file (.del),
combined with condition and item no. to a table. It is needed for the
later mapping of all information together with the .da1 files.

def runEdprep(self):
Run Edprep. This is similar to the original Edprep program, but it's
simplified. It takes every kind of possible del. char. (which is not a
char in the .script/.del file), e.g. ^ .

Read the .del file:

Using this regular expression, “inline =\s*\|(.*?)$")”
it is ensured that everything is taken from .del file after each line
beginning with “inline”.

The next regular expression does the following:
ret = re.compile("trial E(\d*)I(\d*)D0(.+?)end
E\d*I\d*D0", re.M).findall(content)

It stores the data in a list with strings, containing: condition no.
(list index [0]), sentence no. (list index [1]). And you get
everything between E#I#D# ... end E#I#D# with index [2].
That is important, because these are the experimental trials we
are interested in.

What is planned for version 2.0:
Include the functionality into Eyedry. This separate step is not
really needed, but has been implemented for transparency.
Otherwise IT IS REQUIRED to implement lots of internal checks to
identify possible errors. Error detection is done by user when
checking the .cnt file.

2.3.5 The EyedryGUI – class
EyedryGUI is a module to build up the GUI for the general infos
needed for the analysis of FF, FP, TT.

def runEyedry(self):
Get values from GUI and run EyeSimplify - Eyedry.
Run EyedryAna:
analyser = EyedryAna(fill, long_cutoff, short_cutoff,
cntfilename, filelist)

EyeSimplify – Documentation
by Susanne Manke

11

What is planned for version 2.0:
Add more options to GUI as options for the analysis, e.g. constants
like Line Length, TT_CutOff, FP_CutOff.

Add additional options to each type of analysis.

2.3.6 The EyedryAna – class
EyedryAna computes the eye movement measurements that were
chosen by user through the EyedryGUI module, which is used in
the main module EyeSimplify.

def loadCntFile(self):
Get the region definitions from cnt file. This is done with the help
of a regular expression:
lineRegEx =
re.compile("^\s*(\d+)\s+(\d+)\s+\d+\s+\d+\s+\d+\s+(.+)
\s*$")

Where item no. = regular expression group 1, condition no. =
regular expression group 2 and group 3 are region borders (limits).

def loadData(self):
Parse a da1 files for needed info: cond no., item no., subject no.,
char no., line no., fixation data. This is also done with a regular
expression:

lineRegEx =
re.compile("^\s*\d+\s+(\d+)\s+(\d+)\s+\d+\s+\d+\s+\d+\
s+\d+\s+\d+\s+(.+)\s*$")

Where condition = group 1, item = group 2 and the coordinates of
fixations [line no., char no, fix.begin, fix.end] = group 3.

def calculate(self):
Map everything together: fixation info from .da1, region info from
.cnt and give computed results (by insertData) to output (done by
writeOutput). This method gets all data:
dictionary with “set, cond and item as key” – tuple and region limits,
by various checks, like a regression check (have I already been
there, or not? -> increment position, if already visited).

What is planned for version 2.0:
Add more eye movement measurements:
First Pass Regressions Out, Second Pass.

def insertData(self):

 This function computes the values for chosen analysis.

 First Fixation:

Is the duration of first fixation in a region.

EyeSimplify – Documentation
by Susanne Manke

12

 Premissions:
 If fixation too short, get next fixations.
 If fixation too long, ignore next fixations.
 Ignore all regressions (character by character)

 First Pass Time:

Accumulate all fixations between first fixation and first leaving of
that region.
 Premissions:
 Ignore all regressions (region by region, regressions within
 a region are valid).
 Leaving region to left side is catched separately
 If too long fixation during pass, then ignore whole pass

Total Time:

 Acculumate all valid fixations (not to short/too long) within a region.
 Premissions:
 If fixation too long, ignore all following fixations.

What is planned for version 2.0:
Debug FP, TT and FF in cooperation with Chuck Clifton.
There are several values which are not equal to the output that
original Eyedry produces: EyeSimplify removes too many values
from the measurements.

def writeOutput(self):

 Write computed values to output table with or without "0"s.
 Additionally, it cut offs total values from the given cut off, which is

for Total Time 4000 and for First Pass 2000. These values were
given by the original analysis tool and are “hard-coded” in this
program.

What is planned for version 2.0:
Implement cut off values as dynamic values, given by the user.
(GUI)

 Small Little Helpers:
 def getFixation – Get 4er tuple of fixation coordinates
 def getDelta – Compute duration of fixation
 def checkCutoff, def fixTooLong, def fixTooShort – Fixation

Check (and Cut Offs)
 def isRegression(self, delta, position) - Regression – Check
 def checkLineEnd(self, region_limit, delta) – Check for Line

End

EyeSimplify – Documentation
by Susanne Manke

13

2.4 Exception Handling
All exceptions are IOErrors. In relation to the importance of a message, it
is printed as stderr out (if needed for whole procedure), otherwise it’s
printed to a log file.

The method runEyeDoctor doesn’t need any exception, because it is run
via os.system and throws an exception anyway.

EyeSimplify – Documentation
by Susanne Manke

14

3. Testing
Testing is an important part of the project. Unfortunately there was not enough time
to test the usability of the program, but this is planned for the development in version
2.0.

3.1 During Development – Functionality Tests
The several parts of the program have been tested several times during
development. This includes e.g. functionality of buttons, tabs and the
logging of Edprep and EyeSimplify.

During the development of the final analysis part, there were lots of tests.
In most cases, a file set containing “expling.cnt, mb1n23.da1, test.ctl” and
“mb.lst” that were created with the original software Eyedry and Edprep.
These files helped the developer, to identify premissions for the
measurement of fixations and to check them with created output by
Eyedry. It also meant very time-consuming tests like, change something
and re-implement it and so on. Finally, it works for the development file
set.

3.2 Final Regression Test
A regression test checks the correctness of the software, whenever parts
of the software are working properly.

Process: 40 files from original study at Institute of Psychology. A set of
result files has been created with Eyedry and than with EyeSimplify,
using the same .cnt, .da1 and .lst file.

For this test, the developer wrote a small tool: “EmptyLineKiller”. A
program that removes empty lines from the Eyedry output and therefore
make it syntactically comparable with the EyeSimplify output (title of tab
deleted before testing).

Result: FAILED. This is a great problem, because the program cannot be
used until it is found why EyeSimplify removes several fixations from the
final measurements.

EyeSimplify – Documentation
by Susanne Manke

15

4. Evaluation
An evaluation for EyeSimplify is not a simple task. It is mainly done by comparing the
output files with the output created with Eyedry.

4.1 Evaluation Plan

The following evaluation plan has been used to eval EyeSimplify. It
contains the task description for the judgers.

- 1. Convert Edf - Files -
No conversion eval needed, because EDF2ASC is the same program
used for preparing data for analysis.

- 2. Clean Up ASC Files -
Clean Up is the same process, but in Eyesimplify: without searching for
the program executable.

- 3. Adding Regions of Interest -
No Evaluation, because regions of interest have to be added manually
at the whole file and this can be done with the included editor in ES or
with any other text editor.

- 4. Get Region Data -
This program is originally known as EDPREP. You can find more
information
in the user's guide.

EyeSimplify contains a newly implemented and more feasible
implementation of this tool.

SUBJECT 1

 File: expling.del

 Open the EDPREP60 tool, given in your working directory.

 Insert the following:

 smallest condition no: 1
 largest condition no: 14
 smallest experimental sentence no: 1
 largest experimental sentence no: 36
 delimiter character: ^
 name of delimited input file: expling.del
 count file: test.cnt

[Duration, using EDPREP60 tool: 50.5 sec]

EyeSimplify – Documentation
by Susanne Manke

16

SUBJECT 2

 File: expling.del

 Open EyeSimplify, tab 4 "Get Region Data".

 Insert the following:

 1 - smallest condition
 9 - largest condition
 1 - smallest sentence
 36 - largest sentence
 keep given delimiter character

 Click on "generate cnt file":

 give dialogue a .del file
 give dialogue a .cnt file

[Duration, using EyeSimplify - tab 4: 23.7 sec]

-5. Data Analysis -

Type of Analysis: First Fixation

File Set 1: mb1n12.da1, mb1n23.da1
File Set 2: mb3n5.da1

SUBJECT 1

 Analysis with Eyedry:

File Set 1: mb1n12.da1, mb1n23.da1

Use given files:

 mb2.lst – Data file list
 expling.cnt – region info file
 test.ctl – general info for Eyedry

Please start the Eyedry program.

Follow the questions on the screen with given answers:

1. Want a hard copy ? y/n : n
2. What is output trace file name? : test.tra
3. Type an identifying string to print out:

<enter>
4. What is maximum number of fixations on an item:

100
5. Type name of file containing control info:

test.ctl
6. type <enter>
7. Name of file that lists data files ? : mb2.lst

EyeSimplify – Documentation
by Susanne Manke

17

8. Any exceptions file? y/n : n
9. Control (cnt) file name? : expling.cnt

Analysis Menu:
a. Choose a number for an analysis: 1

First Fixation:
a. 1, r, n, n, ff, - , - , - , -, n
b. insert output file: tested.txt
c. Do you want a typeout of the item by item

data? n

[Duration, Analysis with Eyedry: 49.6 sec]

 Analysis with EyeSimplify:

File Set 2: mb3n5.da1

Use given file:

 expling.cnt – region info file
 (no other file is needed, because for one file you don’t even need a
.lst)

 Please start the EyeSimplify program.
 Go to tab 5.

 Do the following:

1. Data List:
 Add “mb3n5.da1” to the list

Bug: Move with mouse over the window and all widgets
will

appear.
 2. Add “expling.cnt” to the list

 3. Choose First Fixation
 4. Click on “Generate”
 5. Click on „Save as“ and save file as: „testes.txt“

[Duration, Analysis with EyeSimplify: 16.6 sec]

 SUBJECT 2

 Analysis with EyeSimplify:

File Set 1: mb1n12.da1, mb1n23.da1

Use given file:

 expling.cnt – region info file
 (no other file is needed, because for two files you don’t even need
a .lst)

 Please start the EyeSimplify program.

EyeSimplify – Documentation
by Susanne Manke

18

 Go to tab 5.

 Do the following:

 1. Data List:
 Add “mb1n12.da1, mb1n23.da1” to the list

Bug: Move with mouse over the window and all widgets
will

appear.
 2. Add “expling.cnt” to the list

 3. Choose First Fixation
 4. Click on “Generate”
 5. Click on „Save as“ and save file as: „testes2.txt“

[Duration, Analysis with EyeSimplify: 20.2 sec]

 Analysis with Eyedry:

File Set 2: mb3n5.da1

Use given files:

 mb1.lst – Data file list
 expling.cnt – region info file
 test.ctl – general info for Eyedry

Please start the Eyedry program.

Follow the questions on the screen with given answers:
1. Want a hard copy ? y/n : n
2. What is output trace file name? : test2.tra
3. Type an identifying string to print out:<enter>
4. What is maximum number of fixations on an item:

100
5. Type name of file containing control info:

test.ctl
6. type <enter>
7. Name of file that lists data files ? : mb1.lst
8. Any exceptions file? y/n : n
9. Control (cnt) file name? : expling.cnt

Analysis Menu:
b. Choose a number for an analysis: 1

First Fixation:
d. 1, r, n, n, ff, - , - , - , -, n
e. insert output file: tested2.txt
f. Do you want a typeout of the item by item

data? n

[Duration, Analysis with Eyedry: 47.7 sec]

EyeSimplify – Documentation
by Susanne Manke

19

4.2 Results
Two different people were trained in both programs before evaluation to
en-sure a comparable result. This could be also done untrained, but I
wanted to keep it simple for the subjects.

Eyedry Subject 1 Subject 2 EyeSimplify

File Set 1 49.6 sec

20.2 sec

File Set 2 16.6 sec

47.7 sec

The table shows the values for EyeSimplify and Eyedry. EyeSimplify is
more than 2-3x faster with both file sets in processing a first fixation
analysis.

Additionally, a comparison in the no. of steps to perform for an analysis
represents also the advantages of EyeSimplify: ca. 13 steps for Eyedry
whereas EyeSimplify only needs max. 7 steps.

Evaluation passed.

EyeSimplify – Documentation
by Susanne Manke

20

5. Learned Lessions
This chapter highlights the learned lessions during a programming software project
like this one.

5.1 The Project itself

In contrast to other projects, this project has been very time-consuming.
The most time-consuming factor was the lack of information about how to
compute eye-tracking measurements.

The motivation of the project is still given, when there are milestones
within the project. This is also ensures that everything is in time.

All problems and changes and “to-dos” were written to a project log. This
helped to keep an overview of the whole project.

5.2 The Development

The developer made several experiences during the development.

One very time-consuming factor was to refresh programming skills in
Python, especially in totally unknown chapters like PMW etc.

 During the development of GUI it is important that minor functionality is
given and you can check the usability afterwards(!). If you want to re-
design some parts of the GUI, you will need much more time as
expected. For example, it could last one day to implement an additional
feature.

Code must be thrown away, in the very first moment you don’t need it
anymore. According to the principles of Extreme Programming, you won’t
need your code again!

GUI Programming with Windows XP: first error.
GUI Programming with Tkinter and Windows XP: second error.

Don’t forget any backup! Fortunately the developer forgot nothing to
backup, but after a week of 10 hours per day of programming, it would be
very annoying to loosing time.

EyeSimplify – Documentation
by Susanne Manke

21

7. Plan for Version 2.0
As already mentioned above within part of the software, the following is planned for
version 2.0.

7.1 Final Tests – Usability
The usability testing should be done with the current version and the
version with a new GUI.

It can be tested with several persons with different background
knowledge. The main user is defined as having knowledge in computers,
psychology and eye-tracking measurements.

7.2 Debugging

7.2.1 Problems with Tkinter and Windows XP, and PMW
Vanishing widgets seems to be in relation to the TK – SaveAs-
Dialogue. This can be solved by porting the GUI to wxPython –
maybe.

Estimated Time Complexity: 1 month

7.2.2 The output from ES differs from the output of ED
This needs to be tested for each different figure per analysis.
The debugging would be a trial-and-error – development which can
be very time-consuming, if you don’t know why a figure is included
in the measurements and why not.

The final regression test showed that EyeSimplify removes too
many fixations from the measurements.

That debugging needs to be done in closer cooperation with Chuck
Clifton and his team, because it needs to be checked whether
there is a bug in ED or the fixations are needed or ES makes
something wrong and why.

Estimated Time Complexity: 2 -3 weeks with 10h per day per
analysis type. (with Chuck Clifton) 1.5 – 2 months (without Chuck
Clifton)

7.3 Adding Features
Add Second Pass and First Pass Regressions Out to the analysis:
Implementation of SP and Rout should be done within 2 weeks, but with
additionally 1 month per analysis for testing and debugging.

Further smaller features, as already mentioned above: 1 month.

EyeSimplify – Documentation
by Susanne Manke

22

Thank You

Dr. Anke Holler and Dr. Markus Demleitner for supervising the project,
their support and help in Python problems.

Dr. Lisa Irmen for giving me an insight in experimental psychological methods
and her support regarding all psychological related information.

Charles Clifton for being always a help. And digging into the problems with Eyedry
and investing so much time at a point where I really was lost.
As well as Jeffrey D Kinsey and Patrick Sturt for their support.

	Abstract
	1. Program Introduction – Conceptual Level
	 1.1 Before EyeSimplify: What needs to be done
	 1.2 EyeSimplify: What is done
	Phase 1.
	
	 Phase 2.
	 2. Program Introduction – Implementation Level
	
	
	
	
	2.1 Programs used for Development on Windows XP
	2.2 Programs based on Development
	 2.3 Selected Methods explained
	2.3.1 The EyeSimplify – class
	2.3.2 The Edf2Asc – class
	2.3.3 The AddReg – class
	2.3.4 The Edprep – class
	2.3.5 The EyedryGUI – class
	2.3.6 The EyedryAna – class

	2.4 Exception Handling

	 3. Testing
	3.1 During Development – Functionality Tests
	3.2 Final Regression Test

	 4. Evaluation
	An evaluation for EyeSimplify is not a simple task. It is mainly done by comparing the output files with the output created with Eyedry.
	4.1 Evaluation Plan

	The following evaluation plan has been used to eval EyeSimplify. It contains the task description for the judgers.
	4.2 Results

	
	 5. Learned Lessions
	This chapter highlights the learned lessions during a programming software project like this one.
	5.1 The Project itself

	In contrast to other projects, this project has been very time-consuming. The most time-consuming factor was the lack of information about how to compute eye-tracking measurements.
	5.2 The Development

	The developer made several experiences during the development.
	One very time-consuming factor was to refresh programming skills in Python, especially in totally unknown chapters like PMW etc.
	 7. Plan for Version 2.0
	As already mentioned above within part of the software, the following is planned for version 2.0.
	7.1 Final Tests – Usability
	7.2 Debugging
	7.2.1 Problems with Tkinter and Windows XP, and PMW
	7.2.2 The output from ES differs from the output of ED

	7.3 Adding Features

	Thank You

