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Background

Transformers introduced in 2017 revolutionized NLP.

‘BERT and GPT-2 became popular around 20109.
Earlier work explored Finding Experts in Transformer Models.
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Inspiration from Previous Work

Inspiration from Images:
Neurons capture visual concepts like “trees” or “dogs” (Bau et

al., 2017).

In Text:
Sentiment neurons in LSTMs detect emotions like happiness

or sadness (Radford et al., 2017).



TLMs' Pros and Cons

Pros Cons
* Mechanism unknown

* Mastery of diverse tasks (text * Lack control over output.

generation, summarization). * Biases inherited from training

data.
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Concepts as
binary sentence
datasets

Structure: _
Concept c: Described by sentences labeled as:

Contains c: Positive examples.
Does not contain c: Negative examples.

Primary Dataset: OneSec (from Wikipedia,
annotated with WordNet senses).

WordNet Label Format: lemma%ss:pp:pos:src
lemma: Base form (e.g., "bird").
Ss: Sense number (e.g., "1"). .
pp: Semantic category ID (e.g., "05" for animal).
pos: Part of speech (e.g., "n" for noun).
Src: Annotation source (manual/automatic).

Flexible Representation:
Broad (sport), precise (football), or abstract
sentiment). _
istinguish homographs (note: “reminder” vs
“tone’%.
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Method overview

Goal: Control concept presence in text generation.

Key ldea:
Use internal expert units in TLMs for self-conditioning.

No need for external models, fine-tuning, or additional parameters.

Steps:
|dentify expert units.
Intervene to simulate concept presence.
Adjust intervention strength k to control concept intensity.
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Generative
Mechanism

sLanguage Model: Autoregressive generation:

T
p@ = | |pCrelxa)
t=1

Conditioned Generation:

pxly=c)xply=clx)p(x)
op(y = ¢ | x): Conditional probability
(concept presence).

*p(x): Ensures text remains natural.

*Hypothesis: TLMs internally model p(y = c | x)

naturally.
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Self-
conditioning
method

Expert Units:

Neurons contributing to p(y = c | x).
Expertise Measurement: Rank units using Average
Precision (AP).

Steps:

Identify expert units for a concept.

Apply do(c, k): Set top-k units to simulate concept
presence.

Adjust k to control concept intensity.
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Other methods

FUDGE (Future Discriminator Guidance)
Core Idea: Uses a lightweight external discriminator to guide generation dynamically.

Process:
Trains a discriminator to predict if text will meet target conditions.

Adjusts token probabilities based on discriminator scores.

PPLM-BoW (Plug and Play Language Model)

Core Idea: Modifies TLM's hidden states to push generation toward a target concept.
Process:

Defines target concepts via a Bag of Words (BoW).

Optimizes hidden states using gradient updates during inference.
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AP Definition

Precision-Recall Curve:
Precision: Correct positive predictions.
Recall: Identified actual positives.

AP Definition:
Area under the Precision-Recall Curve.

AP € |0,1]: Higher AP = better
predictor.

Use in Method.:

Rank expert units by AP to identify top
contributors to a concept.

Birepisi Correct Predictions TP
recision = =
Total Predictions TP+ FP
Correct Predictions TP
Recall = —

Total GroundTruth TP + FN

Assist Figure 1: Precision and recall formular
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Experimental Analysis Overview

1 Self-conditioned
Generation

Show concept control with expert units.

Achieve gender balance; compare with FUDGE and PPLM -
BoW.

3 Method Comparison

Highlight differences in mechanisms and efficiency.

4 Expert Unit Ranking

Validate Top-K experts for effective control.

17



*Goal: Control text generation using expert
units.

Analysis 1: Method:

*Apply do(c,k) to intervene on k-top expert

CO Nnce pt CO ﬂtrO | iJLrJ"stZ.WordNet concepts (e.g., bird%1:05:00).
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1.Increasing k for bird%1:05:00.

k=0 (0%)

k = 40 (0.009%)
k = 60 (0.015%)
k = 80 (0.019%)

k = 200 (0.048%)

, | had a friend who used to
teach high school English and he was like, "Oh,
all you have to do is just get out

, many of these treasures

were worth hundreds of thousands of dollars.

But this isn’t the first time that a horse

, through a freak occurrence,
an invasion of house sparrows, which so often
reduces the black-browed this

, our own ancestors rode
about on chicken-like air wings. But this wonder
of the air has no such wings.

of year, birds chase each
and watching. flot racing form, bird, bird bird
bird bird bird bird bird bird bird bird bird

Table 1. Generated sentences using GPT2-L with context

Once upon a time

*Concept presence increases with k.

*At k=200, repetition occurs
saturation.

*Few expert units (0.048%) can control
text generation.
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2.Condition text on elevator%l1:06:00 and frustration%l1:12:00

k = 60 (0.014%)
c —elevator%1:06:00
The two scientists were unable to solve a problem in their research when they
started a great deal of unusual levitation and deceleration, which blew them up a few hundred feet and
dropped them back to the ground.

k = 60 (0.014%)
c =frustration%1:12:00
Even though we had spent a lot of time just to find the path that could lead to the
species, we did not have success," has an Indian scientist, taking measurements from a lone unicorn on
the walls of a remote mountain

Table 2: Generated sentences using GPT2-L with the context used by OpenAl for 2
different concepts.

*Text remains coherent.

eConcepts are integrated.
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3.Test homograph concepts lead

lead%1:07:02

k = 50 (0.012%) the left-hander would al-
ways start at the front in the first two in-
stances, but when Mauricio Gaponi rose to
the podium,

lead%1:27:00

k = 100 (0.024%) a crust layer was applied to
a partially fortified nickel base, thereby caus-
ing to zinc- and copper- ground element cob.
The occurrence of those metal and chrome

Table 3: Homograph Conditioning Results

*Correct meaning controlled by context.
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Analysis 2: Bias
Mitigation

» Goal: Achieve gender parity in text generation.

* Methods:
» Ours: Top-k expert units.
« FUDGE: External classifier (A).
« PPLM-BoW: Gradient steps.

 Metrics:

» Ap(c,*): Probability difference.
« Perplexity: Text naturalness.
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Example Text at Parity Points

Context "The nurse said that" + do(man, 30)

The nurse said that he was not in the mood.
The nurse said that he had not been given any instructions...
The nurse said that he felt that she was too old...

The nurse said that he could not understand what was happening...

The nurse said that he had to leave the room...

Context "The warrior desired that" + do(woman, 30)

The warrior desired that she could be with her lover...

The warrior desired that she be seen, so she was sent on the hunt...

The warrior desired that she had the courage and strength...
The warrior desired that she may be able to bear children...
The warrior desired that she should be able to walk around...

Table 4: Sentences generated at the generative
parity points that continue "The nurse said that"
with he and "The warrior desired that" with she.

Experiment: Generate sentences at parity for
biased contexts.

"The nurse said that”"— man.
"The warrior desired that”— woman.
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1. Compare perplexity when achieving gender parity in text

generation.
%2102
%z 1 — do(woman,k) Ours
§ 10" do(man, k) 1
R 10{1: . * Our method achieves parity at lower
0 o5 50 75 100 125 150 Pperplexity (~69.5) than FUDGE ~85.4~85.4)

Perplexity at parity and PPLM-BoW (>250).

* Our method preserves text naturalness while

é 102? — do(woman, ) FUDGE achieving parity.
§ 101'§ do(man, \)
R 10{]~ . s s HL'h”‘lr'..n. . T

0 20 50 75 100 125 150

Perplexity at parity

Figure 1: Perplexity (the lower the better) at parity
points with our method (top) and FUDGE (bottom). ”



2. Parity Point vs.
Model Bias

*Objective: Investigate the relationship
between model bias and effort (parity
point) needed to achieve balance.

e Strong correlation for our method
(r=—0.806r for woman).

* FUDGE and PPLM-BoW show weaker or
Inconsistent correlation.

* Model bias predicts required intervention
strength for our method.
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—0.25 0.00 0.25
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p)
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£0.1 ;
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Uncond. bias (Ap(ec, step = 0))

Figure 2: Parity point as a function of the
model’s unconditional bias.
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3. The Effect of Strong
Conditioning

* Our method maintains diversity at strong
parity points.

* FUDGE: Repetition increases (p>0.5).

* PPLM-BoW: High repetition (p>0.9).

— p(woman|do(woman, k))

/ p(""v(l-”l|d0(m(1,n, A))
0.0+ | '

0 50 100 150 200 250 300

Ours (number of expert units k)

1.0
§ 0.51 — p(woman|do(woman, \))
= p(man|do(man, X))

0.0 . B T T T T T

0 2 1 6 8 10 12
FUDGE (\)

1.0
~ — p(woman|do(woman, step))
'—é 0.5 - p(man|do(man, step))
A

0.0

0.0 0.2 0.4 0.6 0.8 1.0
PPIL.M-BoW (step size)

Figure 3: Probability of generating woman or

man when conditioning on the same concept.
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Analysis 3:Differences with FUDGE and PPLM-BoW

Intervention Internal expert units

Word Repetition Minimal, high diversity
Homograph Handling Easy, fine-grained conditioning
Model Interchangeability Single pre-trained model

Extra Parameters None

Compute Efficiency 7.3x faster than PPLM-BoW

Output probabilities (LSTM)
Moderate

Hard (needs extra discriminator)
Works with any TLM

Requires LSTM discriminator

Similar to ours

Latent state adjustment
Highest, low diversity
Hard, lacks word sense
Single pre-trained model
None

Slowest

Our method: Efficient, diverse, and fine-grained without extra parameters.
FUDGE: Flexible but requires external components.
PPLM-BoW: Simple but slow and repetitive.
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Analysis 4.
Efficiency
Comparison

Objective: Test Top-30 expert units for
conditioning.

An exhaustive search for all possible
combinations is not feasible.

Procedure: Intervene on Top-30 experts ranked
by AP, Moving groups (e.g., 31-60, 61-90),
Baseline (no intervention, k = 0).

Contexts:
 "The nurse said that" — man
 "The doctor said that" — woman

28



p(he | do(man, 30))

0.50
0.40
0.30
0.20
0.10

0.00

Experiment 4

; 1.00
Context: “The nurse said that” :
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Figure 4: Probabillities p(he|do(man, 30)) and p(she|do(woman, 30)) for contexts “The
nurse said that” and “The doctor said that" respectively.
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p(she | do(woman, 30))
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Results

Context: “The doctor said that”

Top-30 experts — Highest probabilities.

Random subsets — perform poorly.
Trends: Probability drops as subsets move

away.

Conclusion: Top-K strategy works.
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Takeaways

Efficient Control: Uses expert units
for precise concept conditioning.

Natural Text: Maintains naturalness
with minimal intervention.

Self-contained: No fine-tuning or
external models required.

Proven Effective: Works for diverse
concepts and biases.
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Application of Self-conditioning

TLM Mechanism:

Explains internal generative process.
Useful for identifying and mitigating biases in LMSs.

Comparison with Alternatives:
Vs. Zero-shot/Few-shot Prompt Engineering.
Vs. HFRL (Human Feedback Reinforcement Learning).

Practical Challenges:
Requires identifying expert units for:
Different LM Versions.
Diverse Concepts.
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A ‘ |tt| 6 b |t ‘ |ke . ? Intervention and "One Flew Over the Cuckoo's Nest"

Intervention => Adjusting expert units;
Brain surgery => Altering brain function.

* Over-intervention degrades text quality.

* Risk of unintended model behavior.

* Insight: Precision and minimal
disruption are crucial.

Assist Figure 3: A scene from the movie One Flew Over the Cuckoo's Nest
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More Info

Expert units are more common in shallow layers (general concepts) and
decrease in deeper layers (task-specific representations).

Expert units identified in GPT-2 (e.g., "gender") map to similar positions in
RoBERTa, maintaining high AP values and showing cross-model
generalization.

34



Q&A

1. If the model maximizes p(x | y=c)
without ensuring linguistic correctness,
could it result In nonsensical or
iIncoherent sentences?

2. With larger models like GPT-3 or
GPT-4, would the number of expert
units required for intervention remain
proportionally small, or would it scale
non-linearly with model complexity?




Q&A

3. Could this approach be
extended to detect and mitigate
other biases (e.g., racial or age-
related) automatically across
diverse contexts, rather than
pre-defining specific concepts
like "nurse” or "warrior™?

4. |s the smaller number of
expert units needed to Induce
the "man” concept due to an
Inherent bias favoring men in
occupations?

)




Q&A

5. How do the authors
propose to automate
finding the optimal k to

achieve parity, as

mentioned In section 5.27

)

6. Should the paper have
Included a structured
human evaluation, rather
than relying on selected
examples?




More questions?
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1.Multilingual Abilities ot PLMs

Types of
Multilingualism

Explicit: Trained on multilingual
data (e.g., XGLM, BLOOM)

Incidental: Emerges from
English-dominant data (e.g.,
Llama?2)

Why It Matters Focus: Decoder-

based PLMs
Improves cross-lingual tasks Complex language-specific
(e.g., translation) recovery
Reveals how PLMs handle Behavior of language-specific
multiple languages neurons is unknown
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1.Method Overview

Obijective: Identify
and control
language-specific

neurons.

W,

Focus:Transition
from word-level to
sentence-level
neuron analysis.

Key Models: XGLM,
BLOOM, LlamaZ.

German, French,
Spanish, Chinese,
Japanese.

Languages: English,

43




Finding Neurons:

Label texts as target
(Positive) or non-target
(Negative).

Measure activations using
mean across tokens.

ldentify Top-k (positive) and
Bottom-k (negative)
neurons.

2.Procedure

)

Controlling Neurons:

Replace activations with
median values for the
target language.

Apply in unconditional and
conditional text generation.

Finding
Language-Specific
Neurons

Y

A\_','A

o — .
A=

R,

Einen
perfekte
n Satz
gibt es

nicht.

Controlling

in Chinese
Neurons

[BOS]

Intervention
in German

\\

Neurons

Language-Specific Neurons

Fmtervention

T E B
Z:FE\D e

Wer kampft,
kann
verlieren; wer
nicht kampft,
hat schon
verloren.

Figure 1: Overview of our proposal.
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3.Key Differences from Prior Methods

Prior Approach: This Study:

Word-level focus (e.g., gender Sentence-level, language-specific
blas, homographs). focus.

Used max-pooling for Uses mean aggregation for token
aggregation. consistency.

Includes both Top-k and Bottom-

Considered only Top-k neurons. k neurons for deeper insights.

45



Experiments analysis

(> (1]

INTRODUCTION METHOD

K

EXPERIMENTS CONCLUSION
ANALYSIS




*Tasks:

1.Finding Language-specific Neurons

2.Unconditional Generation: No input,
random sampling.

lEXperlment 3.Cond_itional Gene_ration: Machine
SetU p translation with ambiguous prompts.
Evaluation:

*Target Language Probability.
*Text Quality (BLEU Score).

BLEU Score:
Measures text quality using n-gram
overlap with reference text.
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1. Finding Language-
specific Neurons

Goal: Identify neurons activated uniquely for
each language.

Method:

Rank neurons by Average Precision (AP).
Analyze Top-k, Middle-k, and Bottom-k neurons.
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1 1 Distribution Across Model Layers

Middle Bottom
501 ||-Hl = 80 1 il
_ 1IN
I 401
I

20 4

120 A
100
80 1 40 A

60 - 30 4

Top/Bottom-k Neurons:

Concentrated in the first and last layers.
Middle-k Neurons:

Located in the middle layers.

20_ =
20 1 101

0- 0-

60

250 A

150 1 ]
0 200 -
.
100 150 |
30 -
100
5o 20 -

Top and Bottom layers contain language-specific
neurons.

Middle layers focus on language-agnostic semantic
processing.

10 301

0.

60

501 150

150 - 404

100 1 301 1007

20 1
50 4 50
10 4

0- 0 -

0 10 20 30 0 10 20 30

Figure 2: Neuron Activation Patterns (Top,

Middle, Bottom Layers) 49



1.2 Overlap Across Languages

. Overlap between languages: < 5%.
de cn CS fr Ja zh Example: German-Spanish (74),

de 2000 41 74 30 44 34 French-Japanese (21).

en 41 2000 34 41 49 40

es 74 34 2000 57 77 22

fr 30 41 57 2000 21 03 Neurons are highly distinct for
ja 44 49 77 21 2000 77 each language.

Supports language-specific

zh 34 40 22 93 27 2000 processing in decoder models.

Table 3: Pairwise neuron overlap for six languages (de, en,
es, fr, ja, zh).
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2.Unconditional
Text Generation
Setup

Objective:

Assess if neuron intervention controls the
output language.

Setup:
Input: [BOS] token (no prompt).

100 generations (random sampling:
temperature=0.8, top-p=0.9).

Metrics:

Target Language Probability: Classified using
FastText.

Text Quality: Measured using BLEU-4 score.
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2.1 Modify specific language neurons with a [BOS] token as input.

Input

[BOS]

Output

Intervention in
English neurons

Some of the issues that we are gonna have here are: the NSA is investigating whether the
program is leaking in to the public and the government is trying to stop it as of late as it is
possible. In the meantime the NSA is going to run the Panama Papers to find out what the

Intervention in
German neurons

Vortrage unter der Uberschrift "War firr Trojé und ihr jahrhundert' zu nutzen und
abzuschlieRRen.

Intervention in
French neurons

«lIl serait dommage de réécrire I'histoire au lieu de donner a entendre qu'une personne est une
personne vivant dans I'état dans lequel elle est présentey, ajoute le Kentou. «La plupart des
médias dans le monde ne donnent pas suffisamment de voix, et qu'un jour il n'y

Intervention in
Spanish neurons

Chile, Colombia, Paraguay, Uruguay, Bolivia, Chile, Ecuador, Peru, Uruguay, Colombia,
Paraguay, Paraguay, Colombia

Intervention in
Chinese neurons

ZR(C)ANERBHINXANT URA,

Intervention in
Japanese neurons

EEWEQ25BDEND:=-O)C D ml, EXHEEEDEERBICHEEHBLET,

Figure 3: Outputs when activating language-specific neurons

English — Outputs in English.
German, Spanish, French, Chinese,
Japanese — Corresponding outputs.

Activating target neurons controls
the language.
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2.2 Measured accuracy before and after intervention

before after
Top Bottom Both

XGLM en 40.0 62.0 77.0 89.0
(564M) de 0.0 89.0 31.0 95.0
fr 0.0 86.0 7.0  90.0
20 71.0 50 78.0 : .
fﬁ 70 82.0 50.0 79.0 Before Intervention: Low probability of target languages.
ja 7.0 92.0 61.0 99.0
- 93 80.3 38.5 88.3
FIIB%OM e 36:8 2(8):8 66:8 gg:g After Intervention:
fr  13.0 80.0 72.0 98.0 Top-k: Positive activation — Higher probability.
h 12'8 4‘11'8 gg'g gz'g Bottom-k: Negative activation — Complementary role.
ja 0.0 67.0 350 97.0 Combined: Best results (e.g., German — 95%)).
- 123 550 59.5 92.7
Llama2 en 83.0 82.0 89.0 89.0
(7b) de 00 20 6.0 23.0
fr 20 1.0 8.0 7.0
es 1.0 4.0 40 35.0
zh 0.0 20 40 50.0
ja 1.0 1.0 12.0 10.0
- 145 153 20.5 35.7

Table 4: Target Language Probability 53



2.3 Neuron Activation Distribution

XGLM-564M : fr

120 A  off

100 - S on
80 A
60 -
40 -
20 1
0 -

-5.0 =25 0.0 2.5 5.0

XGLM-564M : fr

125 1 _ N off

20 on
100 -
75 A
50 1
25 A

-7.5 =50 =25 0.0 2.5

Figure 5: Neuron Activation
Distribution ("on" vs "off")

Ecperiments:

Compared activation values of language-specific neurons
when target language (French) is active (“on”) vs inactive
(“off").

Top-k Neurons: Strong positive activation for target
languages.

Bottom-k Neurons: Strong negative activation helps
distinction.

Both Top and Bottom neurons are critical.
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2.4 Ablation Study of Neuron Intervention
XGLM-564M : es

100 25
— Accuracy
go 4 ——- BLEU >0
1000-10,000 neurons — Optimal balance of
accuracy and quality (BLEU).
604 = ymmEmmm—T - 15 Too many neurons — Text collapses, quality
= drops.
D
40 - - 10
20 - |5 Optimal control requires a balanced intervention
range.
0 1 I I Ll I 1 0

Figure 6: Vary the number of neurons intervened (log1o(k)).
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3.Conditional Text
Generation Setup

Objective:

Control target language output in machine
translation tasks.

Setup:
Input: Ambiguous prompt (“Translate into a
target language”).
Evaluation: Accuracy (language occurrence)
and BLEU (translation quality).
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3.1 Model Generated Examples

Input - Translate an English sentence into a target language.\n English: Machu Picchu consist of
three main structures, namely Intihuatana, the Temple of the Sun, and the Room of the
Three Windows.\n Target Language:
Output | Without any Machu Picchu consist of three main structures, namely Intihuatana, the Temple of the Sun,
intervention and the Room of the Three Windows.

Intervention in
German neurons

Machu Picchu besteht aus drei Hauptstrukturen, namlich Intihuatana, der Tempel der
Sonne und die Zimmer mit drei Fenstern.

Intervention in
French neurons

Machu Picchu est composé de trois structures principales, les Intihuatana, le Temple du
Soleil et la Salle des Trois Fenétres.

Intervention in
Spanish neurons

El Machu Picchu esta compuesto por tres principales estructuras, como el Intihuatana, el
Templo del Sol y el Salon de las Tres Ventanas.

Intervention in
Chinese neurons

HEHIDBIRE=TEMER, BIFE, ZRN=E%E.

Intervention in
Japanese neurons

TF1EFAF=EDDFEBENTHS. 10 T1475F . KEDO#HEE. BLU=ZDDEDEHETH
Do

Figure 4: Translation Results with Neuron Intervention.

Setup: Ambiguous prompt + neuron
intervention.

No Intervention: Default language
output (English).

With Intervention: Model
successfully generates target
language text (German, French, etc.)

Neuron intervention effectively
controls output language.
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3.2 Conditional Generation Results

FLORES200 IWSLT2017 WMT
Accuracy BLEU Accuracy BLEU Accuracy BLEU
XGLM-564M de 0.0 — 38.0 00— 0.0 0.0 — 15.0 00— 0.0 00— 17.0 00— 0.0
XGLM-564M es 0.0 - 3.0 0.0 - 0.0 — — — —
XGLM-564M ja 00— 0.0 00— 0.0 0.0 — 0.0 00— 0.0 — —
XGLM-564M fr 0.0— 0.0 00— 0.0 00— 3.0 00— 0.0 00— 1.0 00— 0.0
XGLM-564M zh 00 — 1.0 00— 00 00— 20 00— 00 00— 2.0 00— 0.0
BLOOM-1b7 de 0.0 — 56.0 13— 1.3 0.0 — 35.0 10— 1.8 0.0 — 37.0 29 — 1.7
BLOOM-1b7 es 0.0 — 2.0 1.2 - 1.2 — — — —
BLOOM-1b7 ja 00 — 6.0 0.2 — 0.1 00 — 8.0 0.1 — 0.2 — —
BLOOM-1b7 fr 0.0 — 16.0 1.7 - 2.8 0.0 — 2.0 1.0 —- 1.5 00— 90 1.7 - 2.9
BLOOM-1b7 zh 0.0 — 21.0 03— 0.2 00— 3.0 02— 03 0.0 — 34.0 0.5 — 0.6
Llama2-7b de 0.0 — 66.0 26 — 17.7 0.0 — 48.0 1.2 — 12.5 2.0 — 53.0 53 — 15.2
Llama2-7b es 4.0 — 77.0 3.3 — 16.6 — — — —
Llama2-7b ja 0.0 — 58.0 03 — 104 1.0 — 57.0 02— 4.5 — —
Llama2-7b fr 1.0 — 58.0 4.1 — 21.5 0.0 — 32.0 1.0 —» 111 0.0 — 36.0 2.1 — 13.2
Llama2-7b zh 1.0 — 76.0 1.0 — 11.5 3.0 — 82.0 06 — 7.8 12.0 — 86.0 24 — 11.3
Llama2-13b de 0.0 — 22.0 1.5 — 8.8 0.0 — 37.0 06 — 100 40— 320 33 — 97
Llama2-13b es 2.0 — 14.0 1.8 —+ 43 — — — —
Llama2-13b ja. 70 —-540 24110 40—-750 07— 6.1 — —
Llama2-13b fr 0.0 — 23.0 1.6 — 10.5 0.0 — 9.0 0.7 - 4.7 1.0 — 15.0 22 — 6.6
Llama2-13b zh 20.0 — 93.0 44 — 191 40.0 — 96.0 58— 9.6 570—99.0 135 — 189

Table 5: Translation Accuracy and BLEU scores across tasks.

Llama2 achieves significant
improvements in both Accuracy
and BLEU.

BLOOM and XGLM show limited
Improvements, especially on
BLEU scores.

Conclusion:

Llama2 produces correct
translations; others struggle with
coherence.
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3.3 Effect of Prompts ( Ambiguous & Explicit )

“Translate a sentence “Translate an English sentence
from English to a target language.” into a target language.”

Accuracy BLEU Accuracy BLEU
de 00 — 620 28 — 165 00 — 660 26 — 177 Ambiguous prompts benefit most from
es 50 — 780 40 — 1635 40 — 770 33 — 16.6 : :
ja 00 — 550 03 — 92 00 — 580 03 — 104 neuronintervention.
fr 00 — 580 34 — 213 1.0 — 580 41 — 215

“Translate an English sentence “Translate an English sentence |anguage neurons — minimal improvement_

into German.” into Japanese.”

Accuracy BLEU Accuracy BLEU
de 960 — 99.0 328 — 244 00 — 20 03 — 12
es 00 — 10 20 — 2.6 00 - 20 01 — 04
ja. 00 — 00 03 — 04 1000 — 990 243 — 197
fr 00 — 30 26 — 3.1 00 —- 30 02 — 1.0
zh 00 — 20 08 — 04 00 — 960 13 — 149

Table 6: Translation tasks with different prompt settings
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I Conclusion

Language-Specific Neurons exist in first
and last layers of decoder-based PLMs.

Neuron Intervention controls target
language generation.

Future Work: Model compression and
fine-tuning for unseen languages.

Limitations: Focus on open models and

SiX languages
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