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Background

•Transformers introduced in 2017 revolutionized NLP.

•BERT and GPT-2 became popular around 2019.

•Earlier work explored Finding Experts in Transformer Models. 
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Inspiration from Previous Work

Inspiration from Images:
Neurons capture visual concepts like “trees” or “dogs” (Bau et 

al., 2017).

In Text:

Sentiment neurons in LSTMs detect emotions like happiness 

or sadness (Radford et al., 2017).
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TLMs’ Pros and Cons

Pros

• Mastery of diverse tasks (text 
generation, summarization).

Cons

• Mechanism unknown

• Lack control over output.

• Biases inherited from training 
data.
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Objective

FIND MECHANISM CONDITIONED TEXT 
GENERATION
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Concepts as 
binary sentence 
datasets

Structure:
Concept c: Described by sentences labeled as:

Contains c: Positive examples.
Does not contain c: Negative examples.

Primary Dataset: OneSec (from Wikipedia, 
annotated with WordNet senses).

WordNet Label Format: lemma%ss:pp:pos:src
lemma: Base form (e.g., "bird").
ss: Sense number (e.g., "1").
pp: Semantic category ID (e.g., "05" for animal).
pos: Part of speech (e.g., "n" for noun).
src: Annotation source (manual/automatic).

Flexible Representation:
Broad (sport), precise (football), or abstract 
(sentiment).
Distinguish homographs (note: “reminder” vs 
“tone”).
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Method overview

Goal: Control concept presence in text generation.

Key Idea:
Use internal expert units in TLMs for self-conditioning.
No need for external models, fine-tuning, or additional parameters.

Steps:
Identify expert units.
Intervene to simulate concept presence.
Adjust intervention strength k to control concept intensity.
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Generative 
Mechanism

•Language Model: Autoregressive generation: 

𝑝(𝑥) = ෑ

𝑡=1

𝑇

𝑝(𝑥𝑡|𝑥<𝑡)

•Conditioned Generation:

 𝒑(𝒙 ∣ 𝒚 = 𝒄) ∝ 𝒑(𝒚 = 𝒄 ∣ 𝒙) 𝒑(𝒙)

•𝒑(𝒚 = 𝒄 | 𝒙): Conditional probability 
(concept presence).

•𝒑(𝒙): Ensures text remains natural.

•Hypothesis: TLMs internally model 𝒑(𝒚 = 𝒄 | 𝒙) 
naturally.
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Self-
conditioning 
method

Expert Units:
Neurons contributing to 𝑝(𝑦 = 𝑐 ∣ 𝑥).

Expertise Measurement: Rank units using Average 
Precision (AP).

Steps:
Identify expert units for a concept.
Apply do(c, k): Set top-k units to simulate concept 

presence.
Adjust k to control concept intensity.
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Other methods

FUDGE (Future Discriminator Guidance)

Core Idea: Uses a lightweight external discriminator to guide generation dynamically.

Process:

Trains a discriminator to predict if text will meet target conditions.

Adjusts token probabilities based on discriminator scores.

PPLM-BoW (Plug and Play Language Model)
Core Idea: Modifies TLM’s hidden states to push generation toward a target concept.
Process:
Defines target concepts via a Bag of Words (BoW).
Optimizes hidden states using gradient updates during inference.
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AP Definition

Precision-Recall Curve:
Precision: Correct positive predictions.
Recall: Identified actual positives.

AP Definition:
Area under the Precision-Recall Curve.
𝐴𝑃 ∈ [0,1]: Higher AP = better 
predictor.

Use in Method:
Rank expert units by AP to identify top 
contributors to a concept.

Assist Figure 1: Precision and recall formular

Assist Figure 2: An example of PR Curve 15
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Experimental Analysis Overview

• Show concept control with expert units.
1 Self-conditioned 

Generation

• Achieve gender balance; compare with FUDGE and PPLM-
BoW.

2 Gender Parity

• Highlight differences in mechanisms and efficiency.3 Method Comparison

• Validate Top-K experts for effective control.4 Expert Unit Ranking
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Analysis 1: 
Concept Control

•Goal: Control text generation using expert 
units.

•Method:
•Apply do(c,k) to intervene on k-top expert 
units.
•Use WordNet concepts (e.g., bird%1:05:00).

18



1.Increasing k for bird%1:05:00.

•Concept presence increases with k.

•At k=200, repetition occurs 
saturation. 

•Few expert units (0.048%) can control 
text generation.

Table 1: Generated sentences using GPT2-L with context 
Once upon a time
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2.Condition text on elevator%1:06:00 and frustration%1:12:00

•Text remains coherent.

•Concepts are integrated. 

Table 2: Generated sentences using GPT2-L with the context used by OpenAI for 2 
different concepts. 
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3.Test homograph concepts lead

•Correct meaning controlled by context.

Table 3: Homograph Conditioning Results
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Analysis 2: Bias 
Mitigation

• Goal: Achieve gender parity in text generation.

• Methods:

• Ours: Top-k expert units.

• FUDGE: External classifier (λ).

• PPLM-BoW: Gradient steps.

• Metrics:

• Δp(c,⋆): Probability difference.

• Perplexity: Text naturalness.
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Example Text at Parity Points

Experiment: Generate sentences at parity for 
biased contexts.

"The nurse said that" → man.

"The warrior desired that" → woman.

Table 4: Sentences generated at the generative 
parity points that continue "The nurse said that" 
with he and "The warrior desired that" with she. 
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1. Compare perplexity when achieving gender parity in text 
generation.

• Our method achieves parity at lower 
perplexity (∼69.5) than FUDGE ∼85.4∼85.4) 
and PPLM-BoW (>250).

• Our method preserves text naturalness while 
achieving parity.

Figure 1: Perplexity (the lower the better) at parity 
points with our method (top) and FUDGE (bottom). 24



2. Parity Point vs. 
Model Bias

• Strong correlation for our method 
(r=−0.806r for woman).

• FUDGE and PPLM-BoW show weaker or 
inconsistent correlation.

• Model bias predicts required intervention 
strength for our method.

Figure 2: Parity point as a function of the 
model’s unconditional bias. 

•Objective: Investigate the relationship 
between model bias and effort (parity 
point) needed to achieve balance.

25



3. The Effect of Strong 
Conditioning

• Our method maintains diversity at strong 
parity points.

• FUDGE: Repetition increases (p>0.5).

• PPLM-BoW: High repetition (p>0.9).

Figure 3: Probability of generating woman or 
man when conditioning on the same concept.
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Analysis 3:Differences with FUDGE and PPLM-BoW

Aspect Our Method FUDGE PPLM-BoW

Intervention Internal expert units Output probabilities (LSTM) Latent state adjustment

Word Repetition Minimal, high diversity Moderate Highest, low diversity

Homograph Handling Easy, fine-grained conditioning Hard (needs extra discriminator) Hard, lacks word sense

Model Interchangeability Single pre-trained model Works with any TLM Single pre-trained model

Extra Parameters None Requires LSTM discriminator None

Compute Efficiency 7.3x faster than PPLM-BoW Similar to ours Slowest

Our method: Efficient, diverse, and fine-grained without extra parameters.

FUDGE: Flexible but requires external components.

PPLM-BoW: Simple but slow and repetitive. 
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Analysis 4: 
Efficiency 
Comparison 

• Objective: Test Top-30 expert units for 
conditioning.

• An exhaustive search for all possible 
combinations is not feasible.

• Procedure: Intervene on Top-30 experts ranked 
by AP, Moving groups (e.g., 31-60, 61-90), 
Baseline (no intervention, k = 0).

• Contexts:

• "The nurse said that" → man

• "The doctor said that" → woman

28



Experiment 4 Results

Top-30 experts → Highest probabilities.

Random subsets → perform poorly.

Trends: Probability drops as subsets move 
away.

Conclusion: Top-K strategy works. 

Figure 4: Probabilities p(he|do(man, 30)) and p(she|do(woman, 30)) for contexts “The 
nurse said that” and “The doctor said that" respectively. 
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Takeaways

Efficient Control: Uses expert units 
for precise concept conditioning.

Natural Text: Maintains naturalness 
with minimal intervention.

Self-contained: No fine-tuning or 
external models required.

Proven Effective: Works for diverse 
concepts and biases. 
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Application of Self-conditioning

TLM Mechanism:
Explains internal generative process.

Useful for identifying and mitigating biases in LMs.

Comparison with Alternatives:
Vs. Zero-shot/Few-shot Prompt Engineering.

Vs. HFRL (Human Feedback Reinforcement Learning).

Practical Challenges:
Requires identifying expert units for:

Different LM Versions.

Diverse Concepts.
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A little bit like ...? Intervention and "One Flew Over the Cuckoo's Nest"

Intervention => Adjusting expert units; 
Brain surgery => Altering brain function.

• Over-intervention degrades text quality.

• Risk of unintended model behavior. 

• Insight: Precision and minimal 

disruption are crucial.

Assist Figure 3: A scene from the movie One Flew Over the Cuckoo's Nest 
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More info

Expert units are more common in shallow layers (general concepts) and 

decrease in deeper layers (task-specific representations).

Expert units identified in GPT-2 (e.g., "gender") map to similar positions in 

RoBERTa, maintaining high AP values and showing cross-model 

generalization. 
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1. If the model maximizes p(x∣y=c)
without ensuring linguistic correctness,
could it result in nonsensical or
incoherent sentences?

2. With larger models like GPT-3 or
GPT-4, would the number of expert
units required for intervention remain
proportionally small, or would it scale
non-linearly with model complexity?

Q&A
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3. Could this approach be 
extended to detect and mitigate 
other biases (e.g., racial or age-

related) automatically across 
diverse contexts, rather than 

pre-defining specific concepts 
like "nurse" or "warrior"?

4. Is the smaller number of 
expert units needed to induce 
the "man" concept due to an 
inherent bias favoring men in 

occupations?

Q&A
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5. How do the authors 
propose to automate 

finding the optimal k to 
achieve parity, as 

mentioned in section 5.2?

6. Should the paper have 
included a structured 

human evaluation, rather 
than relying on selected 

examples? 

Q&A
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More questions?
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On the Multilingual Ability 
of Decoder-based Pre-
trained Language Models: 
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1.Multilingual Abilities of PLMs

Types of 
Multilingualism

Explicit: Trained on multilingual 
data (e.g., XGLM, BLOOM)

Incidental: Emerges from 
English-dominant data (e.g., 
Llama2)

Why It Matters
Focus: Decoder-

based PLMs

Improves cross-lingual tasks 
(e.g., translation)

Reveals how PLMs handle 
multiple languages

Complex language-specific 
recovery

Behavior of language-specific 
neurons is unknown
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1.Method Overview

Objective: Identify 

and control 
language-specific 

neurons.

Focus:Transition 
from word-level to 

sentence-level 
neuron analysis.

Key Models: XGLM, 
BLOOM, Llama2.

Languages: English, 
German, French, 
Spanish, Chinese, 

Japanese. 
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2.Procedure

Finding Neurons:

Label texts as target 
(Positive) or non-target 
(Negative).

Measure activations using 
mean across tokens.

Identify Top-k (positive) and 
Bottom-k (negative) 
neurons.

Controlling Neurons:

Replace activations with 
median values for the 
target language.

Apply in unconditional and 
conditional text generation.

Figure 1: Overview of our proposal. 

44



3.Key Differences from Prior Methods

Prior Approach:

Word-level focus (e.g., gender 
bias, homographs).

Used max-pooling for 
aggregation.

Considered only Top-k neurons.

This Study:

Sentence-level, language-specific 
focus.

Uses mean aggregation for token 
consistency.

Includes both Top-k and Bottom-
k neurons for deeper insights.
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1.Experiment 
Setup

•Tasks:

1.Finding Language-specific Neurons

2.Unconditional Generation: No input, 
random sampling.

3.Conditional Generation: Machine 
translation with ambiguous prompts.

Evaluation:

•Target Language Probability.

•Text Quality (BLEU Score).

BLEU Score:
Measures text quality using n-gram 
overlap with reference text.
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1. Finding Language-
specific Neurons

Goal: Identify neurons activated uniquely for 

each language.

Method:
Rank neurons by Average Precision (AP).

Analyze Top-k, Middle-k, and Bottom-k neurons.
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1.1 Distribution Across Model Layers

Figure 2: Neuron Activation Patterns (Top, 
Middle, Bottom Layers)

Top/Bottom-k Neurons:

Concentrated in the first and last layers.

Middle-k Neurons:

Located in the middle layers.

Top and Bottom layers contain language-specific 

neurons.

Middle layers focus on language-agnostic semantic 

processing.
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1.2 Overlap Across Languages

Table 3: Pairwise neuron overlap for six languages (de, en, 
es, fr, ja, zh).

Overlap between languages: < 5%.

Example: German-Spanish (74), 

French-Japanese (21). 

Neurons are highly distinct for 

each language.

Supports language-specific 

processing in decoder models. 
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2.Unconditional 
Text Generation 
Setup

Objective:

Assess if neuron intervention controls the 
output language.

Setup:

Input: [BOS] token (no prompt).

100 generations (random sampling: 
temperature=0.8, top-p=0.9).

Metrics: 

Target Language Probability: Classified using 
FastText.

Text Quality: Measured using BLEU-4 score. 
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2.1 Modify specific language neurons with a [BOS] token as input.

Figure 3: Outputs when activating language-specific neurons

English → Outputs in English.

German, Spanish, French, Chinese, 

Japanese → Corresponding outputs.

Activating target neurons controls 

the language.
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2.2 Measured accuracy before and after intervention 

Table 4: Target Language Probability

Before Intervention: Low probability of target languages.

After Intervention:

Top-k: Positive activation → Higher probability.

Bottom-k: Negative activation → Complementary role.

Combined: Best results (e.g., German → 95%).

53



2.3 Neuron Activation Distribution

Figure 5: Neuron Activation 
Distribution ("on" vs "off")

Ecperiments:

Compared activation values of language-specific neurons 
when target language (French) is active (“on”) vs inactive 

(“off”).

Top-k Neurons: Strong positive activation for target 
languages.
Bottom-k Neurons: Strong negative activation helps 
distinction.

Both Top and Bottom neurons are critical.
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2.4 Ablation Study of Neuron Intervention

Figure 6: Vary the number of neurons intervened (log₁₀(k)).

1000–10,000 neurons → Optimal balance of 

accuracy and quality (BLEU).

Too many neurons → Text collapses, quality 

drops. 

Optimal control requires a balanced intervention 

range.
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3.Conditional Text 
Generation Setup

Objective:

Control target language output in machine 
translation tasks.

Setup:

Input: Ambiguous prompt (“Translate into a 

target language”).
Evaluation: Accuracy (language occurrence) 

and BLEU (translation quality). 
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3.1 Model Generated Examples

Figure 4: Translation Results with Neuron Intervention.

Setup: Ambiguous prompt + neuron

intervention.

No Intervention: Default language 

output (English).

With Intervention: Model 

successfully generates target 

language text (German, French, etc.).

Neuron intervention effectively 

controls output language.
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3.2 Conditional Generation Results

Table 5: Translation Accuracy and BLEU scores across tasks.

Llama2 achieves significant 

improvements in both Accuracy 

and BLEU.

BLOOM and XGLM show limited 

improvements, especially on 

BLEU scores.

Conclusion:

Llama2 produces correct 

translations; others struggle with 

coherence.
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3.3  Effect of Prompts ( Ambiguous & Explicit )

Table 6: Translation tasks with different prompt settings

Ambiguous prompts benefit most from 

neuron intervention.

Explicit prompts: Already activate target 

language neurons → minimal improvement.
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Conclusion

Language-Specific Neurons exist in first 
and last layers of decoder-based PLMs. 

Neuron Intervention controls target 
language generation. 

Future Work: Model compression and 
fine-tuning for unseen languages. 

Limitations: Focus on open models and 
six languages
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