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Locating and Editing Factual

Associations in GPT
Meng et al. 2022

Two distinct goals

> Understanding LLMs: Where is factual knowledge
stored?

> Practical application: How do we edit a fact?



Facts — Where & How?
A quest for knowledge

Thesis

‘Factual associations in GPT correspond to a
localized computation’

— The model stores facts — let’s find them!
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Results — Restoring a hidden state
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Results — Restore 10 MLP / Attn layers
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Results — Restore 10 MLP / Attn layers

Figure 7 shows mean causal traces as line plots with 95% confidence intervals, instead of heatmaps.

(a} Causal effects of a single hidden vector (b) Causal effects of a run of 10 MLP lookups (L) Causal effects of a run of 10 Attn modules
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Figure 7: Mean causal traces of GPT-XL over a sample of 1000 factual statements, shown as a line plot with
95% confidence intervals. (a) Shows the same data as Figure 1j as a line plot instead of a heatmap; (b) matches
Figure 1k; (c) matches Figure Im. The confidence intervals confirm that the distinctions between peak and
non-peak causal effects at both early and late sites are significant.




Overall results

> Early site (last subject token) — MLPs
> Late site — Attn
> Early site is more surprising

— further investigation



Sever MLP / Attn

(a) baseline corrupted input condition (c) Causal effect of states at the early site with Attn or MLP modules severed
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Figure 3: Causal effects with a modified computation graph. (a,b) To isolate the effects of MLP modules
when measuring causal effects, the computation graph is modified. (¢) Comparing Average Indirect Effects with
and without severing MLP implicates the computation of (¢) midlayer MLP modules in the causal effects. No
similar gap 1s seen when attention is similarly severed.

Severing MLPs neuters early site causal effects
— MLPs are essential to recall facts




Locating and Editing Factual

Associations in GPT
Meng et al. 2022

Two distinct goals

v Understanding LLMs: Where is factual knowledge
stored?

> Practical application: How do we edit a fact?



Rank-One Model Editing (ROME)

Assumption

2" MLP layer = linear associative memory
> Key-Value store (K, V)
> WK=V



Rank-One Model Editing (ROME)
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Testing on CounterFact

> Based on ParaRel — WikiData
> Paraphrase prompts — generalization
> Neighborhood prompts — specificity
> The Eiffel Tower is in Paris
> The Louvre Is in Paris

> Generation prompts — deeper generalization



Table 4: Quantitative Editing Results. 95% confidence intervals are in parentheses. Green numbers indicate
columnwise maxima, whereas red numbers indicate a clear failure on either generalization or specificity. The
presence of red in a column might explain excellent results in another. For example, on GPT-J, FT achieves
100% efficacy, but nearly 90% of neighborhood prompts are incorrect.

Ed Score Efficacy Generalization Specificity Fluency  Consistency
itor
St ES 1 EM 1 PS T PM 1 NS 1t NM 1t GE 1 RS T

GPT-2 XL 305 22.2(09) -48(0.3) 24.7(0.8) -5.0(0.3) 78.1(0.6) 5.0(0.2) 626.6(0.3) 31.9(0.2)
FT 65.1 100.0 (0.0) 98.8(0.1) 87.9(0.6) 46.6(0.8) 40.4(0.7) -6.2(0.4) 607.1(1.1) 40.5(0.3)
FT+L 669 99.1(0.2) 91.5(0.5) 48.7(1.0) 28.9(0.8) 70.3(0.7) 35(0.3) 621.4(1.0) 37.4(0.3)
KN 356 28.7(1.0) -3.4(0.3) 28.0(0.9) -3.3(0.2) 72.9(0.7) 3.7(0.2) 5704 2.3) 30.3(0.3)
KE 522 843(0.8) 339(09) 754(0.8) 14.6(0.6) 30.9(0.7) -11.0(0.5) 586.6(2.1) 31.2(0.3)
KE-CF 181 999(0.1) 97.0(0.2) 958(04) 59.2(0.8) 6.9(0.3) -63.2(0.7) 383.0(4.1) 24.5(0.4)
MEND 579 99.1(0.2) 709(0.8) 654(0.9 122(0.6) 37.9(0.7) -11.6(0.5) 624.2(0.4) 34.8(0.3)
MEND-CF 14.9 100.0 (0.0) 99.2(0.1) 97.0(0.3) 65.6(0.7) 55(0.3) -69.9(0.6) 570.0(2.1) 33.2(0.3)
ROME 89.2 100.0(0.1) 97.9(0.2) 96.4 (0.3) 62.7(0.8) 75.4(0.7) 4.2(0.2) 621.9(0.5) 41.9(0.3)
GPT-J 236 163(1.6) -7.2(0.7) 18.6(1.5) -7.4(0.6) 83.0(1.1) 7.3(0.5) 621.8(0.6) 29.8(0.5)
FT 25.5 100.0 (0.0) 99.9 (0.0) 96.6(0.6) 71.0(1.5) 10.3(0.8) -50.7(1.3) 387.8(7.3) 24.6(0.8)
FT+L 68.7 99.6(0.3) 95.0(0.6) 47.9(1.9) 304(1.5) 78.6(1.2) 6.8 (0.5) 622.8(0.6) 35.5(0.5)
MEND 632 974(0.7) 71.5(1.6) 53.6(1.9) 11.0(1.3) 539(14) -6.0(0.9) 620.5(0.7) 32.6(0.5)
ROME 91.5 99.9(0.1) 99.4(0.3) 99.1(0.3) 741(1.3) 789(1.2) 5.2(0.5) 620.1(09) 43.0(0.6)




Limitations / Comments

> Doesn't work when sand o are reversed
> Bill Gates is the founder of Gl

> Apple’s founder is SiCHCHODS

— Could a bidirectional transformer solve this?
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Like their ship or their bodies, their
written language has no forward or
backward direction. Linguists call this
"nonlinear orthography,” which raises
the question, "Is this how they think?"



Is the transformer like us?

v Our language, orthography and way of thinking is
(mostly) linear — unidirectional

v Need the whole picture before we can assign facts
The Eiffel...

... affair

x Tokens don't necessarily match our concepts



v

Sources

Images

Space needle: https://www.spaceneedle.com/assets/_1440x810_crop_top-center_75_none/spaceneedle-desktop-posterimage.jpg
Arrival: https://en.kinorium.com/676817/gallery/screenshot/

Literature

https://arxiv.org/pdf/2202.05262 (Meng et al. 2022)

https://aclanthology.org/2023.findings-emnlp.1012.pdf (Pinter and Elhadad 2023)

https://arxiv.org/pdf/2407.08734 (Miller et al. 2024)

https://rome.baulab.info/

Interview

https://www.youtube.com/watch?v=_NMQyOu2HTo&t=2644s&ab_channel=YannicKilcher
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