Activation Patching in GPT-2

Steinar Grässel Course: Mechanistic Interpretability Faculty: CL Heidelberg

Locating and Editing Factual Associations in GPT Meng et al. 2022

Two distinct goals

- Understanding LLMs: Where is factual knowledge stored?
- Practical application: How do we edit a fact?

Facts — Where & How? A quest for knowledge

Thesis

'Factual associations in GPT correspond to a localized computation'

 \rightarrow The model stores facts — let's find them!

CounterFact — Representing facts

Knowledge tuple t = (5, 7, 0)

Prompt *p* LeBron James plays the sport of

Correct answer

basketball

* r = plays sport professionally

Path Tracing

Clean Run

Corrupted Run

Corrupted w/ restoration

Results — Restoring a hidden state

Results — Restoring a hidden state

Results — Restore <u>10</u> MLP / Attn layers

Results — Restore <u>10</u> MLP / Attn layers

Figure 7 shows mean causal traces as line plots with 95% confidence intervals, instead of heatmaps.

Figure 7: Mean causal traces of GPT-XL over a sample of 1000 factual statements, shown as a line plot with 95% confidence intervals. (a) Shows the same data as Figure 1j as a line plot instead of a heatmap; (b) matches Figure 1k; (c) matches Figure 1m. The confidence intervals confirm that the distinctions between peak and non-peak causal effects at both early and late sites are significant.

Overall results

- \succ Early site (last subject token) \rightarrow MLPs
- \succ Late site \rightarrow Attn
- Early site is more surprising
 - \rightarrow further investigation

Sever MLP / Attn

Figure 3: Causal effects with a modified computation graph. (a,b) To isolate the effects of MLP modules when measuring causal effects, the computation graph is modified. (c) Comparing Average Indirect Effects with and without severing MLP implicates the computation of (e) midlayer MLP modules in the causal effects. No similar gap is seen when attention is similarly severed.

Severing MLPs neuters early site causal effects → MLPs are essential to recall facts

Locating and Editing Factual Associations in GPT Meng et al. 2022

Two distinct goals

- Understanding LLMs: Where is factual knowledge stored?
- Practical application: How do we edit a fact?

Rank-One Model Editing (ROME)

Assumption

- 2nd MLP layer ≈ linear associative memory
 - Key-Value store (K, V)
 - $\succ WK \approx V$

Rank-One Model Editing (ROME)

Find k_{*} and v_{*}

Find \mathbf{k}_{\star} and \mathbf{v}_{\star}

Find k_{*} and <u>v</u>*

Testing on CounterFact

\succ Based on ParaRel \rightarrow WikiData

- ➢ Paraphrase prompts → generalization
- ➢ Neighborhood prompts → specificity
 - The Eiffel Tower is in Paris
 - The Louvre is in Paris
- ➤ Generation prompts → deeper generalization

Table 4: Quantitative Editing Results. 95% confidence intervals are in parentheses. Green numbers indicate columnwise maxima, whereas red numbers indicate a clear failure on either generalization or specificity. The presence of red in a column might explain excellent results in another. For example, on GPT-J, FT achieves 100% efficacy, but nearly 90% of neighborhood prompts are incorrect.

Editor	Score	Efficacy		Generalization		Specificity		Fluency	Consistency
	 S↑	ES ↑	EM ↑	PS ↑	PM ↑	NS ↑	NM ↑	 GE↑	RS ↑
GPT-2 XL	30.5	22.2 (0.9)	-4.8 (0.3)	24.7 (0.8)	-5.0 (0.3)	78.1 (0.6)	5.0 (0.2)	626.6 (0.3)	31.9 (0.2)
FT FT+L KN KE KE-CF MEND MEND-CF ROME	65.1 66.9 35.6 52.2 18.1 57.9 14.9 89.2	100.0 (0.0) 99.1 (0.2) 28.7 (1.0) 84.3 (0.8) 99.9 (0.1) 99.1 (0.2) 100.0 (0.0) 100.0 (0.1)	98.8 (0.1) 91.5 (0.5) -3.4 (0.3) 33.9 (0.9) 97.0 (0.2) 70.9 (0.8) 99.2 (0.1) 97.9 (0.2)	87.9 (0.6) 48.7 (1.0) 28.0 (0.9) 75.4 (0.8) 95.8 (0.4) 65.4 (0.9) 97.0 (0.3) 96.4 (0.3)	46.6 (0.8) 28.9 (0.8) -3.3 (0.2) 14.6 (0.6) 59.2 (0.8) 12.2 (0.6) 65.6 (0.7) 62.7 (0.8)	40.4 (0.7) 70.3 (0.7) 72.9 (0.7) 30.9 (0.7) 6.9 (0.3) 37.9 (0.7) 5.5 (0.3) 75.4 (0.7)	-6.2 (0.4) 3.5 (0.3) 3.7 (0.2) -11.0 (0.5) -63.2 (0.7) -11.6 (0.5) -69.9 (0.6) 4.2 (0.2)	607.1 (1.1) 621.4 (1.0) 570.4 (2.3) 586.6 (2.1) 383.0 (4.1) 624.2 (0.4) 570.0 (2.1) 621.9 (0.5)	40.5 (0.3) 37.4 (0.3) 30.3 (0.3) 31.2 (0.3) 24.5 (0.4) 34.8 (0.3) 33.2 (0.3) 41.9 (0.3)
GPT-J	23.6	16.3 (1.6)	-7.2 (0.7)	18.6 (1.5)	-7.4 (0.6)	83.0 (1.1)	7.3 (0.5)	621.8 (0.6)	29.8 (0.5)
FT FT+L MEND ROME	25.5 68.7 63.2 91.5	100.0 (0.0) 99.6 (0.3) 97.4 (0.7) 99.9 (0.1)	99.9 (0.0) 95.0 (0.6) 71.5 (1.6) 99.4 (0.3)	96.6 (0.6) 47.9 (1.9) 53.6 (1.9) 99.1 (0.3)	71.0 (1.5) 30.4 (1.5) 11.0 (1.3) 74.1 (1.3)	10.3 (0.8) 78.6 (1.2) 53.9 (1.4) 78.9 (1.2)	-50.7 (1.3) 6.8 (0.5) -6.0 (0.9) 5.2 (0.5)	387.8 (7.3) 622.8 (0.6) 620.5 (0.7) 620.1 (0.9)	24.6 (0.8) 35.5 (0.5) 32.6 (0.5) 43.0 (0.6)

Limitations / Comments

- Doesn't work when s and o are reversed
 - Bill Gates is the founder of Apple
 - Apple's founder is Steve Jobs
 - → Could a bidirectional transformer solve this?

Last subject token?

Like their ship or their bodies, their written language has no forward or backward direction. Linguists call this "nonlinear orthography," which raises the question, "Is this how they think?"

Is the transformer like us?

- ✓ Our language, orthography and way of thinking is (mostly) linear → unidirectional
- Need the whole picture before we can assign facts

The Eiffel...

... affair

* Tokens don't necessarily match our concepts

Sources

Images

- Space needle: https://www.spaceneedle.com/assets/_1440x810_crop_top-center_75_none/spaceneedle-desktop-posterimage.jpg
- Arrival: https://en.kinorium.com/676817/gallery/screenshot/

Literature

- https://arxiv.org/pdf/2202.05262 (Meng et al. 2022)
- https://aclanthology.org/2023.findings-emnlp.1012.pdf (Pinter and Elhadad 2023)
- https://arxiv.org/pdf/2407.08734 (Miller et al. 2024)
- https://rome.baulab.info/

Interview

https://www.youtube.com/watch?v=_NMQyOu2HTo&t=2644s&ab_channel=YannicKilcher