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Motivation, Task and Approach



e Multi head attention
layers compute attention
scores between tokens

e Multi layer perceptron
(MLP) responds to input

5 ] features (QK-circuit) by

updating output

Feed forward layers function as key-value

! vocabulary distribution

(OV-circuit).

memories.

!Elhage et. al, 2021



Residual stream after MLP layers:

By = bt W o (WA (A Y) + b)) + b, where o = GeLU

Model parametrized by dense matrix multiplications and

non-linearities
e n Features as linear directions in activation space, where d < n

e Features in superposition

— Train linear classifier (probe) on internal activations to
predict feature




e Localization technique for testing feature representation
e Constrain model to use at most k neurons in predicting feature

e Vary k to obtain information on sparsity of feature representation.

e — Limits model to explicit feature representation



Sparse Probing



Sparse Probing

Transformer-based generative-pre-trained (GPT) language model
M:X =Y, x=][x,...x

Tokenized text dataset X € V™7

Labeled dataset Dpope = {Xjt, Zjt}, €.8. tense of every verb

Binary classifier g,(ajl-t) = Zj;, such that L(zj, 2;¢)



Sparse Feature Selection Methods

Train Logistic regression probe for Optimal sparse probing (small k),
else Adaptive thresholding:

1. Choose top neurons with max mean difference
2. Train series of probes with decreasing k:

3. lteratively choose top k; neurons with highest coefficient
magnitude from k;_1



Experiments




Probing in Praxis

e Challenge in conceptual separation of isPolitician vs.
isPolitical, isPerson

e PR=TP/(TP + FP), RE=TP/(TP + FN),
F1=2PRxRE /(PR + RE)

e High PR: Either feature highly polysemantic OR model represents
a more general feature
e High RE: vice versa
e — Which features are most likely associated with the positive
class ?



Empirical Overview

Models 7 GPT's from EleutherAl’s Pyhia suite trained on 800gb

dataset of diverse text

Data Ten different feature collections, including natural
language, programming language and dependency &
other morphological features (POS, tenses, compound
words) & factual features



Results




Polysemanticity

Polysemantic neuron activates on different 1. social security vs.

tok q
orens security

2. Activations for 21
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De-tokenization

e Early layers " de-tokenize”
tokens into n-grams |V/|" by

3o assigning large input
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e Neuron activates very

Superposition in early layers selectively

11



Monosemanticity
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Figure 1: Single neuron activations

e Mean aggregate of activations across long sequences

e Ablation causes 6% average loss increase (70M parameter
model)
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Quantization Model of Scaling

part-of-speech plain text features programming languages factual features
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Figure 2: Caption

e Natural ordering of (rare) features learned

e Factual features learned sufficiently at lower sparsity
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Feature Splitting

emergent features constant features split features stochastic features
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Figure 3: Caption

e Increasing model size enables more monosemanticity allCaps
becomes allCapsShouting, allCapsAbbreviation,

14



Feature unions

Top athlete neurons in Pythia-6.98

athlete sport striker  stolen
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max pre-activation of sumame

Figure 4: Coarse features represented as fine-grained features

e Feature with Low 1-sparse, but high 3-sparse may point to

feature unions
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Interpretability illusions

e Interpreting features for maximum activating dataset examples

e May miss scope of representation
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Judging outputs
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Figure 5: EOS-neuron activations

e Attaining logits by product of MY and neuron output weight
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Frame Title
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Figure 6: Caption

e Feature definition scope different for model

e Low-recall-high-precision isVerb
e Low-precision-high-recall isPassiveVerb

e Undefined, rare features drowned out by pre-defined features.
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Discussion & Conclusion




Limited insights into causation

Sensitive to implementation details

Features in superposition vs. union of multiple independent

features

Increasing model scale harmful to transferability of feature

dataset
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