Mechanistic Interpretability

Fundamentals WT 2024/25

Frederick Riemenschneider

24.10.2024

Recap

A Mathematical Framework

Preliminaries
One-Layer Attention-Only
Transformers

Recap

A Mathematical Framework

Preliminaries
One-Layer Attention-Only
Transformers

References

Recap

Recap

A Mathematical Framework

One-Layer Attention-Only Transformers

Encoder-decoder Architecture

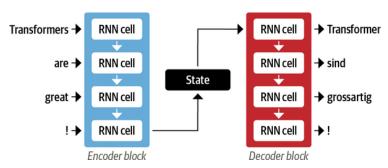


Figure 1: Tunstall et al. 2022, p. 4.

Recap

A Mathematical Framework

One-Layer Attention-Only

References

Preliminaries

Attention

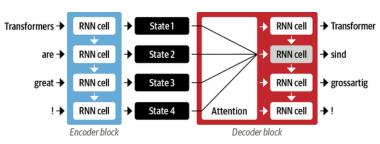


Figure 2: Tunstall et al. 2022, p. 5.

Recap

A Mathematical Framework

Preliminaries
One-Layer Attention-Only
Transformers

Attention

context as a weighted average:

$$c_i = \sum_j^{T^e} lpha_{i,j} m{h}_j^e$$

normalization via softmax:

$$\alpha_{i,j} = \frac{\exp(e_{i,j})}{\sum_k^{T^e} \exp(e_{i,k})}$$

lacksquare importance of $m{h}_{j}^{e}$ for $m{h}_{i-1}^{d}$:

$$e_{i,j} = a(\boldsymbol{h}_{i-1}^d, \boldsymbol{h}_j^e)$$

Recap

A Mathematical Framework

Preliminaries One-Layer Attention-Only Transformers

Self-Attention

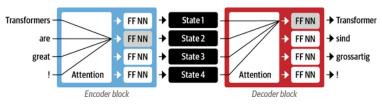


Figure 3: Tunstall et al. 2022, p. 6.

Recap

A Mathematical Framework

One-Layer Attention-Only Transformers

References

Preliminaries

Attention Masks

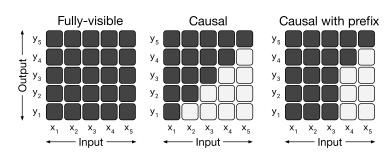


Figure 4: Raffel et al. 2020.

Recap

A Mathematical Framework

Preliminaries
One-Layer Attention-Only
Transformers

Fundamentals

Recap

A Mathematical Framework

Preliminaries
One-Layer Attention-Only
Transformers

References

Which pre-training objectives do you know?

Recap

A Mathematical Framework

One-Layer Attention-Only Transformers

References

Preliminaries

A Mathematical Framework for Transformer Circuits

Recap A Mathematical Framework Preliminaries

One-Layer Attention-Only Transformers References

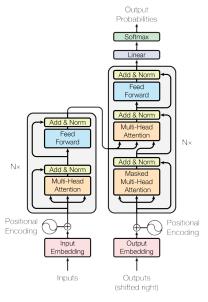
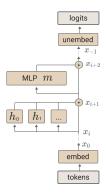


Figure 5: Vaswani et al. 2017.



The final logits are produced by applying the unembedding.

$$T(t) = W_U x_{-1}$$

An MLP layer, m_i is run and added to the residual stream.

$$x_{i+2} \ = \ x_{i+1} \ + \ m(x_{i+1})$$

Each attention head, h, is run and added to the residual stream.

$$x_{i+1} \ = \ x_i \ + \ \sum_{h \in H_i} h(x_i)$$

Token embedding.

$$x_0 \; = \; W_E t$$

Figure 6: Elhage et al. 2021.

Recap

One

residual

block

A Mathematical Framework

One-Layer Attention-Only Transformers

References

Preliminaries

Residual Stream as Communication Channel

main idea: attention heads and MLPs add information to the residual stream

- compositionality, responsibility splitting
- residual stream hardly interpretable, components adding to it may be interpretable
- We (probably) don't want to interpret the residual stream!

Recap

A Mathematical Framework

One-Layer Attention-Only Transformers

Attention Heads are Independent and Additive

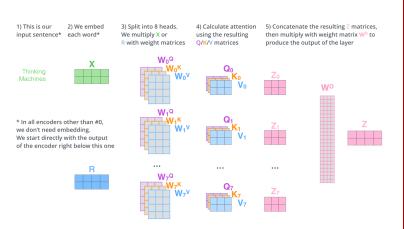


Figure 7: Alammar 2018.

Recap

A Mathematical Framework

One-Layer Attention-Only Transformers

References

Preliminaries

Attention Heads as Information Movement

Each vector receives three representations ("roles")

"Hey there, do you have this information?"

"Hi, I have this information - give me a large weight!"

"Here's the information I have!"

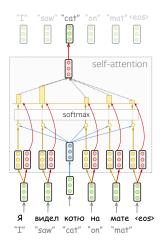


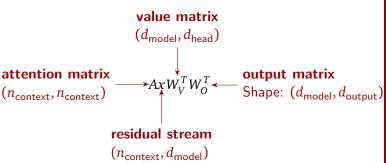
Figure 8: Voita 2023.

Recap

A Mathematical Framework

Preliminaries
One-Layer Attention-Only
Transformers

Attention Heads as Information Movement



Recap

A Mathematical Framework

One-Layer Attention-Only

term

contributes

to bigram

statistics

The attention head terms describe the effects of attention heads in linking input tokens to logits. A^h describes which tokens are attended to while $W_CW_{O'}^hW_E$ describes how each token changes the logits if attended to.

$$T(x) = W_U W_E x^T + \sum_{h \in H} A^h x (W_U W_{OV}^h W_E)^T$$

Recap

A Mathematical Framework

Preliminaries

One-Layer Attention-Only Transformers

$$T(x) = W_U W_E x^T + \sum_{h \in H} A^h x (W_U W_{OV}^h W_E)^T$$

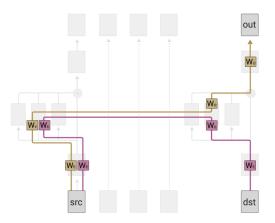
We can look at each attention head independently. Attention is the only communication possibility, enabling skip-trigrams.

Recap

A Mathematical Framework

Preliminaries One-Layer Attention-Only Transformers

Attention Heads as Information Movement



The **OV** ("output-value") circuit determines how attending to a given token affects the logits.

 $W_UW_OW_VW_E$

The QK ("query-key") circuit controls which tokens the head prefers to attend to.

$$W_E^T W_Q^T W_K W_E$$

Recap

A Mathematical Framework

Preliminaries One-Layer Attention-Only Transformers

Skip-Trigrams

Some examples of large entries QK/OV circuit

Source Token	Destination Token	Out Token	Example Skip Tri-grams
" perfect"	" are", " looks",	" perfect", " super",	" perfect are perfect",
	" is", " provides"	" absolute", " pure"	" perfect looks super"
" large"	" contains", " using",	" large", " small",	" large using large",
	" specify", " contain"	" very", " huge"	" large contains small"
" two"	" One", "\n ", " has",	"two", "three", "four",	" two One two",
	"\r\n ", "One"	"five", "one"	" two has three"
"lambda"	"\$\\", "}{\\", "+\\",	"lambda" , "sorted",	"lambda \$\\lambda",
	"(\\", "\${\\"	" lambda", "operator"	"lambda +\\lambda"
"nbsp"	"&", "\"&", "}&",	"nbsp", "01", "gt", "00012",	"nbsp ",
	">&", "=&"	"nbs", "quot"	"nbsp > "
"Great"	"The", "The", "the",	"Great", "great",	"Great The Great",
	"contains", "/"	"poor", "Every"	"Great the great"

Recap

A Mathematical Framework

Preliminaries One-Layer Attention-Only Transformers

The Tokenizer

More examples of large entries QK/OV circuit

Source Token	Destination Token	Out Token	Example Skip Tri-grams "indy Cindy", "indy CINDY"	
"indy"	" C", "C", " V", "V", " R", " c"	"indy", "obby", "INDY", "loyd"		
"Pike"	"P", "P", "V",	"ike", "ikes",	" Pike Pike",	
	"Sp", "V", "R"	"ishing", "owler"	" Pike Spikes"	
" Ralph"	"R", "R", "P",	"alph", "ALPH", "obby",	" Ralph Ralph",	
	"P", "V", "r"	"erald"	" Ralph RALPH"	
" Lloyd"	"L", "L", "P",	"loyd", "alph", "\n ",	" Lloyd Lloyd",	
	"P", "R", "C"	"acman", "atherine"	" Lloyd Catherine"	
" Pixmap"	" P", " Q", "P",	"ixmap", "Canvas",	" Pixmap Pixmap",	
	" p", " U"	"Embed", "grade"	" Pixmap QCanvas"	

Recap

A Mathematical Framework

Preliminaries One-Layer Attention-Only Transformers

Limited Expressivity Can Create Bugs which Seem Strange from the Outside

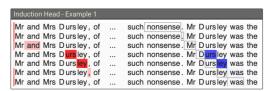
Source Token	Destination Token	Out Token	"Correct" Skip Tri-grams	"Bug" Skip Tri-grams
"Pixmap"	" P", " Q", "P", " p", " U"	"ixmap", "Canvas", "Embed", "grade"	" Pixmap Pixmap", " Pixmap QCanvas"	" Pixmap PCanvas"
Source Token	Destination Token	Out Token	"Correct" Skip Tri-grams	"Bug" Skip Tri-grams
" Lloyd"	"L", "L", "P", "P", "R", "C"	"loyd", "alph", "\n ", "acman", "atherine"	" Lloyd Lloyd", " Lloyd Catherine"	" Lloyd Cloyd", " Lloyd Latherine"
Source Token	Destination Token	Out Token	"Correct" Skip Tri-grams	"Bug" Skip Tri-grams
" keep"	"in", "at", "out", "under", "off"	"bay", "mind", "wraps"	" keep in mind", " keep at bay", " keep under wraps"	" keep in bay", " keep at wraps", " keep under mind"

Recap

A Mathematical Framework

Preliminaries One-Layer Attention-Only Transformers

Induction Heads



One-Laver Attention-Only Transformers

References

Recap A Mathematical Framework Preliminaries

Wrapping Up

- How would you conceptualize the residual stream?
- What does attention essentially do?
 - What is the meaning of query, key, and value?
- What does an MLP essentially do?
- What can a One-Layer Attention-Only Transformer do?
- What do we enable with two layers?
- What is an Induction Head?

Recap

A Mathematical Framework

One-Layer Attention-Only Transformers

Recap

A Mathematical Framework

Preliminaries
One-Layer Attention-Only
Transformers

References

References

Alammar, Jay (2018). The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/. [Blog post].

Elhage, Nelson et al. (2021). "A Mathematical Framework for Transformer Circuits". In: *Transformer Circuits Thread*. https://transformer-circuits.pub/2021/framework/index.html.

Raffel, Colin et al. (2020). "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer". In: *Journal of Machine Learning Research* 21.140, pp. 1–67. url: http://jmlr.org/papers/v21/20-074.html.

Tunstall, Lewis, Leandro von Werra, and Thomas Wolf (2022). *Natural Language Processing with Transformers*. Sebastopol: O'Reilly.

A Mathematical Framework

One-Layer Attention-Only Transformers

References

Preliminaries

References

Vaswani, Ashish et al. (2017). "Attention is All you Need". In:

Advances in Neural Information Processing Systems. Ed. by
I. Guyon et al. Vol. 30. Curran Associates, Inc. url:
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Voita, Elena (Nov. 2023). NLP Course For You. url:

https://lena-voita.github.io/nlp_course.html.

Recap

A Mathematical Framework

One-Layer Attention-Only Transformers