Ruprecht-Karls-Universität Heidelberg
Bilder vom Neuenheimer Feld, Heidelberg und der Universität Heidelberg
Siegel der Uni Heidelberg

Bias - Material

« back

Restricted Course Website

During the semester, I will put course materials up here.

Course Overview

DateSessionMaterial
29.10. (Markert) Organisation, Topic Introduction, Start of Talk Assignment Literature List
Organisation Slides
Intro Slides
12.11. (Markert) Types of Bias, Fairness definitions, Legal Background Obermeyer et al (2019): Dissecting racial bias in an algorithm used to manage the health of populations
Folien
19.11 Measuring bias in word embeddings (PS Logvinenko, Rev: Reuter) Word embeddings quantify 100 years of gender and ethnic stereotypes (Garg et al 2018)
Folien Logvinenko
26.11. Mitigating Bias in Word Embeddings (Reading Group) Man is to computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. (Bolukbasi et al 2016)
3.12 Mitigating Bias in Word Embeddings (HS Lyu, Revs: Liang, Kaiser) It's all in the name: Mitigating Gender Bias with Name-based Corpus Data Substitution (Maudlay et al 2019)
Lipstick on a Pig: Debiasing Methods cover up systematic gender bias in word embeddings but do not remove them (Gonen and Goldberg 2019)
Folien Lyu
10.12 (Start s.t, Ende 16 Uhr) Selection bias and unbiased corpora (PS Kaiser, Rev Logvinenko; HS Reinig, Revs: Lyu, Born) It's a man's Wikipedia... (Wagner et al 2015)
Folien Kaiser
Gender bias in coreference resolution (Rudinger et al 2018)
Mind the GAP: a balanced corpus of gendered ambiguous pronouns (Webster et al 2018)
Folien Reinig
7.1 Case Studies I: Bias in MT (HS Wiesenbach, Revs: Liang, Reuter) Equalizing gender biases in neural MT (Escudero-Font et al (2019)
Learning gender-neutral word embeddings (Zhao et al (2018)
Folien Wiesenbach
14.1 Case Studies II: Bias in dialect processing (HS Born, Revs: Zimmermann, Reinig) Demographic Dialectal Variation in Social Media: A case study of African American English (Blodgett et al 2016)
Twitter Universal Dependency Parsing for African-American and Mainstream American English (Blodgett et al 2018)
Folien Born
21.1 (Start s.t., End 16.00) Bias as disparate impact in ML classification (HS Zimmermann, Liang, Revs: Wiesenbach, Reinig) Equality of Opportunity in Supervised Learning (Hardt et al 2016)
Classifying without discriminating (Kamiran and Calders 2009)
23.1 (Start 11.15) Case Studies III: Bias in Text Classification (HS Reuter, Revs: Lyu, Bacher) Reducing gender bias in abusive language detection
Examining gender and race bias in two hundred sentiment analysis systems (Kiritchenko and Mohammad 2018)
28.1 Case Studies IV: Visual semantic role labeling (HS Wiesenbach, Revs: Born, Zimmermann) Men also like Shopping: Reducing Gender Bias Amplification using Corpus-Level Constraints (Zhao et al 2017)
4.2 Final Discussion, Impact of fair machine learning
TBD (Mid/End of March?) Project Progress Discussion and Feedback Opportunity to discuss project intermediate results and problems in a group (optional for students)

Overview and introductory literature

Literature for presentation is listed in the literature list (see above). Below are some overview papers on fairness in ML and NLP as well as links to legal background.
zum Seitenanfang