Ruprecht-Karls-Universität Heidelberg
Institut für Computerlinguistik

Bilder vom Neuenheimer Feld, Heidelberg und der Universität Heidelberg

Imitation Learning

Module Description

Course Module Abbreviation Credit Points
BA-2010 AS-CL 8 LP
Master SS-CL, SS-TAC 8 LP
Lecturer Artem Sokolov
Module Type Hauptseminar
Language English
First Session 08.10.2018-19.10.2018
Time and Place daily, 10:00-16:00, INF 205 / SR 11
Commitment Deadline 18.10.2018

Prerequisite for Participation

  • Good Knowledge of Probability Theory
  • Knowledge of the following will be helpful: foundations of statistical machine Learning, reinforcement learning and neural networks

Assessment

  • Regular attendance and active participation
  • Presentation or Implementation project

Module Content

This module provides an introduction into theory and practice of learning from demonstrations with a focus on natural language processing use-cases. Closely related to structured prediction and reinforcement learning, imitation learning is particularly suited for sequence prediction tasks, where often good success metrics or intermediate rewards are hard to define, while in the same time it is easy to provide demonstrations of correct behavior. After taking this module you will be able to formulate imitation learning problems, understand deficiencies of some straight-forward approaches to it, map structured prediction tasks to imitation learning, and solve them using deep learning techniques.

Module Overview

Agenda

DatumSitzungZusätzliche Materialien/Kommentare
8.10.1. Introduction
2. Potential Presentations & Projects
Videos:
ALVINN
Super Tux
Mario
Speech Synthesis
9.10.Introduction (contd.)
3. Online learning

10.10.4. Reinforcement Learning
5. Max-Margin Structured Prediction
code exercise
11.10.6. Searn (by Julia Kreutzer)
7. Behavioral Cloning

(updated)
12.10.(no morning session)
8. DAgger (by Dennis Aumiller)

15.10.9. Learning to Search
10. Inverse RL

(for Max-Margin IRL see lecture 5)
16.10.10. AggreVaTe(D)
project spot-lights: MaxIRL (by Philipp Wiesenbach, Marvin Koss, Michael Staniek)
reading group (paper1, paper2)
17.10.(no sessions on Wed)
18.10.12. LOLS (by Leo Born)
13. SeaRNN (by Maximilian Bacher)

19.10.(no sessions on Fri)

Literature

» More material/projects

zum Seitenanfang