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Abstract

Large language models (LLMs) have recently shown impressive perfor-
mance on tasks involving reasoning, leading to a lively debate on whether
these models possess reasoning capabilities similar to humans. However,
despite these successes, the depth of LLMs’ reasoning abilities remains
uncertain. This uncertainty partly stems from the predominant focus on
task performance, measured through shallow accuracy metrics, rather than a
thorough investigation of the models’ reasoning behavior. This paper seeks
to address this gap by providing a comprehensive review of studies that go
beyond task accuracy, offering deeper insights into the models’ reasoning
processes. Furthermore, we survey prevalent methodologies to evaluate
the reasoning behavior of LLMs, emphasizing current trends and efforts
towards more nuanced reasoning analyses. Our review suggests that LLMs
tend to rely on surface-level patterns and correlations in their training data,
rather than on sophisticated reasoning abilities. Additionally, we identify
the need for further research that delineates the key differences between
human and LLM-based reasoning. Through this survey, we aim to shed
light on the complex reasoning processes within LLMs.

1 Introduction

“These models are castles in the air. They have no foundations whatsoever.”
— Jitendra Malik (2021)

Reasoning is an integral aspect of human intelligence and deliberate, rational thought
(Holyoak & Morrison, 2005). It allows individuals to draw conclusions from available
information and move beyond their current knowledge (Lohman & Lakin, 2011). As such,
reasoning plays a fundamental role in problem-solving and decision-making, and has been
a long-standing goal within the field of artificial intelligence (Robinson & Voronkov, 2001).

In recent years, large language models have demonstrated remarkable performance on tasks
that require reasoning (Bubeck et al., 2023; Wei et al., 2022; Kojima et al., 2022). This has
sparked a vigorous debate about the extent to which these models possess reasoning abilities
similar to humans (Mitchell & Krakauer, 2023; Mitchell, 2023; Borji, 2023). While proponents
argue that reasoning capabilities emerge with scale, referring to LLMs as foundation models
(Bommasani et al., 2021; Kaplan et al., 2020), skeptics contend that the models’ performance
primarily reflects their capacity to memorize the vast amount of data they have been trained
on (Wu et al., 2024; Dziri et al., 2023; Razeghi et al., 2022; Zhang et al., 2023). Thus, the
question arises: are these models simply “castles in the air” with “no foundations whatsoever,”
as Malik (2021) once stated, or do they possess genuine reasoning capacities? One of the
major challenges in this debate is the immense size, complexity, and closed-source nature
of popular LLMs and their underlying training data. Moreover, the focus often lies on
the models’ performance on downstream reasoning tasks (Fu et al., 2023; Liu et al., 2023),
overshadowing in-depth analyses of their reasoning behavior. In this study, we seek to shed
light on the ongoing debate by providing a comprehensive overview of research that goes
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beyond task accuracy, offering more nuanced insights into the models’ reasoning processes.
Specifically, we address the following research questions:

RQ1: How do current LLMs behave across diverse reasoning tasks?

RQ2: What are the prevalent evaluation methods employed to assess the reasoning
behavior of large language models?

Other Surveys. While various surveys on reasoning within large language models have
emerged in recent years (Huang & Chang, 2023; Yu et al., 2024; Sun et al., 2024; Yang et al,,
2023; Qiao et al., 2023; Chu et al., 2023; Mialon et al., 2023; Liu et al., 2024; Ahn et al., 2024),
these studies predominantly focus on techniques that seek to enhance or benchmark the
performance of LLMs on downstream reasoning tasks. However, there seems to exist no
review of work yet that assesses the reasoning behavior of LLMs, rather than their final task
performance. Hence, the contributions of this survey are as follows: (i) To the best of our
knowledge, we present the first comprehensive review of literature that evaluates LLM-
based reasoning beyond task accuracy, offering deeper insights into the models’ reasoning
behavior, and (ii) we suggest a taxonomy that categorizes prevalent evaluation methods
designed to analyze the reasoning dynamics of LLMs.

2 Terminology

We begin this survey with an introduction to fundamental concepts and terminologies
pertinent to reasoning in both humans and LLMs. The study of reasoning has captivated
scholarly interest for centuries, with insights from diverse disciplines such as philosophy,
logic, psychology, neuroscience and artificial intelligence (Holyoak & Morrison, 2005). Over
the years, various definitions of reasoning have been proposed, with each discipline offering
its unique perspective. In this survey, we define reasoning in the broadest sense (Leighton,
2003; Holyoak & Morrison, 2005; Byrne et al., 1993), and direct the interested reader to the
work by Yu et al. (2024) and Sun et al. (2024) for more domain-specific definitions.

Definition 2.1 (Reasoning). The process of drawing conclusions based on available information
(usually a set of premises).

It is imperative to note that reasoning is a fundamentally process-oriented activity, rather
than a singular endpoint (Leighton, 2003; Johnson-Laird, 2006). Although this process
often remains hidden in humans, manifesting predominantly through the final conclusions
inferred, cognitive psychology leverages methodologies like “think aloud” protocols to
unveil the cognitive mechanisms underpinning reasoning (Wolcott & Lobczowski, 2021;
Van der Henst et al., 2002; Rips, 1989). Similarly, to understand the reasoning capabilities of
large language models, it is crucial to consider not merely the end result, but the reasoning
process itself. Thus, we differentiate between reasoning behavior and reasoning performance.
Drawing from behavioral psychology, which views behavior as an organism’s response to
stimuli (American Psychological Association, n.d.), we define reasoning behavior as follows:

Definition 2.2 (Reasoning Behavior). The system’s computed response to a reasoning task (the
stimulus), particularly its actions, expressions and underlying mechanisms exhibited during the
reasoning process.

Our working definition highlights the procedural aspects of reasoning, rather than its final
outcome. Understanding a model’s reasoning behavior involves analyzing how it arrives
at its conclusions. Conversely, reasoning performance is outcome-oriented. It is typically
measured in terms of accuracy or the efficiency with which relevant conclusions are drawn
(Barredo Arrieta et al., 2020). While performance can be helpful in evaluating a system’s
capacities to tackle specific reasoning tasks, an analysis of reasoning behavior can yield deeper
insights into the process itself, thereby offering a more comprehensive understanding.

2.1 A Categorization of Reasoning Tasks

Analogous to the assessment of human reasoning within the field of cognitive psychology
(WOOD, 1969; Byrne et al., 1993; Dewey, 2022), the evaluation of reasoning capabilities in
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Figure 1: Schematic overview of the two types of reasoning tasks distinguished in this
survey. Core reasoning tasks are designed to assess a particular reasoning ability within a
given context. Conversely, integrated reasoning tasks involve the concurrent use of various
reasoning skills. Tasks and abilities listed are not exhaustive.

large language models predominantly occurs through their engagement with designated
reasoning tasks (Sun et al., 2024). These tasks are designed to elicit the system’s capability of
drawing conclusions relevant to the problem at hand. In this survey, we distinguish between
core and integrated reasoning tasks. Core reasoning tasks are designed to assess fundamental
reasoning skills in an isolated manner. They typically aim to test a single type of reasoning,
such as logical, mathematical or causal reasoning. Examples of such tasks may include
syllogisms, basic arithmetic problems or structured causal-graph predictions. Conversely,
integrated reasoning tasks require the concurrent use of various reasoning types, thereby
assessing a combination of fundamental reasoning skills. Examples are commonsense or
scientific reasoning tasks. Such problems often reflect the complex cognitive challenges
humans encounter in everyday life and professional settings. A schematic representation
distinguishing these task categories is provided in Figure 1.

For the purpose of this survey, our focus is confined to examining the behaviors of LLMs in
the context of core reasoning tasks, specifically logical, mathematical, and causal reasoning
tasks. We leave a review of the models’ reasoning behaviors within the context of integrated
reasoning tasks to future work.

3 Reasoning Behavior of LLMs

This section reviews studies that extend beyond mere task accuracy, focusing instead on
evaluating the reasoning behavior of large language models.! Through this review, we intend
to address RQ1 and shed light on how these models currently behave across three core
reasoning tasks: logical reasoning (Section 3.1), mathematical reasoning (Section 3.2), and
causal reasoning (Section 3.3).

Iwe consistently specify when a particular technique, other than standard prompting, is utilized.
For a review of prompting approaches designed to improve the models’ reasoning performance, we
recommend consulting prior surveys by Huang & Chang (2023), Yu et al. (2024), or Sun et al. (2024).
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3.1 Behavior in Logical Reasoning Tasks

The study of logical reasoning evolves around the question of how individuals infer valid
conclusions from a set of given premises within a structured framework of logical rules
and principles (Holyoak & Morrison, 2005). Based on how conclusions are inferred, logical
reasoning can be classified into three types: deductive, inductive, and abductive reasoning
(Johnson-Laird, 2008; Flach & Kakas, 2000). While in deductive reasoning, conclusions
necessarily follow from the premises’ truth, inductive and abductive reasoning are considered
defeasible, i.e. conclusions are at most probable, but never necessary (Koons, 2022). Inductive
reasoning is concerned with deriving general conclusions from specific instances, whereas
abductive reasoning entails formulating plausible hypotheses that explain the data observed.
For additional details on the distinction between the three types of logical reasoning, we
refer to prior surveys on reasoning performance within LLMs, such as the ones by Yu et al.
(2024) or Sun et al. (2024).

3.1.1 Behavior in Deductive Reasoning Tasks

Extensive research has been dedicated to examining the reasoning behavior of LLMs in the
context of deductive reasoning tasks. Various studies analyze the validity and consistency
of logical proofs generated by LLMs within deductive reasoning problems. For instance,
Saparov & He (2023) conduct a systematic assessment of the rationales produced by various
GPT-3 iterations (Brown et al., 2020), through chain-of-thought (CoT) prompting (Wei et al.,
2022). By parsing each step of the generated reasoning trace into first-order-logic, its validity,
atomicity, and utility* is measured. Findings indicate that, in comparison to their smaller
counterparts, larger models are more adept at generating both valid and atomic steps.
However, the utility of these steps is often low, resulting in misleading steps from which the
models struggle to recover. In a similar vein, Dziri et al. (2023) study rationales of LLMs by
parsing them into computation graphs, where each node represents a partial solution of the
multi-step reasoning process. Evaluations on Einstein’s puzzle (Vassberg & Vassberg, 2009)
indicate that GPT-3, ChatGPT (OpenAl, 2022) and GPT-4 (OpenAl et al., 2024) solve the task
by reducing multi-step reasoning into shortcut pattern matching. This shortcut behavior
can yield correct answers when the model has been exposed to similar patterns during
training, but falls short in generalizing to novel or more complex instances. Furthermore,
theoretical findings suggest that due to the models” autoregressive nature, mistakes in early
stages of the reasoning process can lead to compounding errors that exponentially diminish
the likelihood of arriving at the correct solution in subsequent steps.

Further studies highlight that LLMs tend to rely on superficial statistical features, rather
than engaging in systematic reasoning. Chen et al. (2024b) illustrate that the premise order
markedly influences the LLMs’ behavior in propositional reasoning tasks. Specifically, when
premises are presented in an order that does not align with the ground-truth proof, models
such as ChatGPT, GPT-4, PaLM 2-L (Anil et al., 2023) and Gemini Pro (Team et al., 2023)
encounter significant difficulties within their reasoning, even though such an ordering does
not change the underlying logic. Zhang et al. (2023) show that an over-reliance on statistical
features in the training data can hinder a model’s reasoning and generalization capacity.
By eliminating certain statistical cues from its training dataset, BERT (Devlin et al., 2019)
demonstrates enhanced generalization capabilities in propositional logic. Similarly, Pirozelli
etal. (2023) indicate that various fine-tuned language models show difficulties in transferring
their logical reasoning ability when cross-probed on unseen deductive reasoning tasks.

Additional research points to the difficulties of LLMs in understanding specific logical
operators. Sanyal et al. (2022) show that GPT-3, RoBERTa (Liu et al., 2019), and models from
the T5 series (Raffel et al., 2020) exhibit deficiencies in comprehending logical negations,
often failing to correctly deduce the implications of negated statements and rules. Similar
findings have been reported by Truong et al. (2023), who demonstrate that models lack
a sensitivity to negations within a broad range of natural language inference tasks. Wan

2Validit‘y denotes whether the proof step logically follows from preceding steps, atomicity reflects
whether it can be proven with exactly one application of a deduction rule, and utility measures its
direct contribution towards the derivation of the final conclusion.
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et al. (2024) comprehensively assess a suite of formal reasoning scenarios, subjecting GPT-3,
ChatGPT, GPT-4, Bard (PaLM 2), Vicuna (Vicuna, 2023) and Guanaco (Dettmers et al., 2023)
to minimum functionality tests (MFTs), serving as logical reasoning unit tests that gauge
the models’ inherent logic comprehension. Their analysis uncovers a common difficulty
among models in identifying logical fallacies. In addition, GPT-4 appears to struggle with
De Morgan’s Laws, which relate conjunctions and disjunctions through logical negation.

A growing body of research investigates the extent to which LLMs exhibit human-like
reasoning patterns, particularly in deductive reasoning tasks. For example, Eisape et al.
(2024) explore the parallels between human reasoning and that of LLMs in syllogisms. Their
findings suggest that LLMs, much like their human counterparts, are susceptible to common
logical fallacies and cognitive biases. Similarly, Dasgupta et al. (2022) find that LLMs, akin
to humans, display content effects, indicating that the problem’s semantic content can
significantly influence the models’ reasoning behavior. Further research corroborates the
manifestation of human reasoning patterns in LLMs, as outlined in Appendix A.

Mechanistic Evaluation. Additional research evaluates the reasoning behavior of LLMs by
inspecting the models’ internal mechanisms during the reasoning process. For example, Hou
et al. (2023) analyze the models’ attention patterns, specifically those of GPT-2 (Radford et al.,
2019) and LLaMA (Touvron et al., 2023), to uncover if and how these models perform multi-
step reasoning internally. Findings indicate a structured, step-wise information processing
within the models. Furthermore, layer-wise probing reveals that LLMs tend to focus on
identifying relevant information from the task in lower layers, transitioning to more intricate
reasoning processes in higher layers. Pirozelli et al. (2023) similarly probe individual layers
of a fine-tuned RoBERTa-large model, corroborating the pivotal role of higher layers in the
reasoning process. Dutta et al. (2024) present an in-depth investigation into the internal
mechanisms of LLaMA 2-7B (Touvron et al., 2023) when instructed via chain-of-thought
prompting. Findings indicate a notable functional rift in the model’s middle layers, where
token representations in the initial half are biased towards pre-training priors, and an abrupt
shift to in-context priors occurs in the latter half. As opposed to the findings by Hou et al.
(2023), the study suggests that LLaMA 2-7B employs multiple, concurrent pathways, instead
of following a singular path of reasoning.

3.1.2 Behavior in Inductive Reasoning Tasks

In contrast to the well-examined domain of deductive reasoning, the reasoning behavior of
LLMs in inductive reasoning tasks remains comparatively underexplored. Nevertheless,
research exists that seeks to evaluate the capability of LLMs to infer general conclusions
from specific examples. For instance, Yang et al. (2024) investigate how LLMs, such as
GPT-J (Wang & Komatsuzaki, 2021) and LLaMA 7B, induce general rules from given facts.
While in principle the models seem able to infer general rules from the data provided,
challenges arise in ensuring that the rules are consistent with the premises, extend beyond
the given information, align with real-world knowledge, and are pertinent to the given task.
Similarly, Qiu et al. (2024) find that LLMs such as GPT-3.5, GPT-4, Claude 2 (Anthropic,
2023), and LLaMA 2-70B are capable of inferring rules from given data. However, the
models frequently err in the application of these rules, highlighting a gap between their
ability to generate and apply rules. Moreover, the rules derived often diverge significantly
from those humans might produce, exhibiting a tendency towards verbosity and an inability
to concentrate on the fundamental patterns for generalization. In addition, the study finds
that LLMs display a pronounced sensitivity to alterations of the task descriptions. Han et al.
(2024) examine the reasoning behaviors of GPT-3.5 and GPT-4 in property induction tasks,
where properties common among different categories need to be induced. Findings suggest
that GPT-4’s behavior closely aligns with human judgments. However, challenges arise
when the models need to handle premise non-monotonicity, a scenario in which adding
more information to an argument can actually decrease its likelihood. For instance, Han
et al. (2024) illustrate that the three-premise argument {crow, peacock, rabbit} — bird is
considered weaker by humans than the two-premise argument {crow, peacock} — bird, a
line of reasoning that both GPT-3.5 and GPT-4 seem to struggle with.
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3.1.3 Behavior in Abductive Reasoning Tasks

Some efforts have been made to evaluate the behavior of LLMs in abductive reasoning
tasks. Collins et al. (2022) ask both humans and GPT-3 to generate plausible explanations for
unexpected counterfactual scenarios, for instance why a window did not break despite being
struck by a rock. Analyses indicate that GPT-3’s ability to generate plausible and coherent
explanations for scenarios that require reasoning beyond established patterns is limited. In
scenarios demanding inventive, coherent, and context-sensitive responses, especially when
the usage of common nouns is restricted, human performance distinctly surpasses that
of GPT-3, underscoring a pronounced deficiency in the model’s ability to reason beyond
its training distribution. Further, Rudinger et al. (2020) reveal that language models such
as GPT-2, BART, and various T5 variants exhibit difficulties in identifying or generating
arguments that either weaken or strengthen a given hypothesis. Even after fine-tuning,
models tend to struggle with the task, often contradicting themselves by producing identical
statements to strengthen and weaken the same premise-hypothesis pair. Xu et al. (2023)
explore the behavior of GPT-3.5, ChatGPT, and PaLLM 2 on various abductive reasoning
tasks, paying particular attention to the models’ rationales and errors manifested during
reasoning. The paper highlights a tendency for LLMs to incorporate redundant information
in their explanations and to generate content not grounded in the context, resulting in
hallucinations. In comparison to deductive reasoning scenarios, findings suggest that
models seem to particularly struggle with multi-hop reasoning in abductive reasoning tasks.

3.2 Behavior in Mathematical Reasoning Tasks

Mathematical reasoning encompasses the structured process of arriving at conclusions
based on established mathematical principles and logical deduction (Horsten, 2023). Several
studies explore the behavior of LLMs in the context mathematical reasoning tasks, especially
in arithmetic and math word problems (MWPs). For instance, Srivastava et al. (2024)
evaluate a set of LLMs on a functional variant of the MATH dataset (Hendrycks et al,,
2021), where the underlying mathematical principles of each problem are captured rather
than a static problem formulation. This allows for evaluating models on different dataset
snapshots, each comprising unique problem formulations but the same underlying reasoning
process. Results reveal inconsistencies across varying snapshots, indicating a tendency
of models to rely on memorization rather than reasoning. Razeghi et al. (2022) further
highlight the impact of how a problem is formulated, noting a marked correlation between
the frequency of terms in the models’ pre-training data and their ability to solve arithmetic
tasks. Similarly, Wu et al. (2024) observe that models struggle with two-digit additions
expressed in mathematical bases that are less represented in the models’ training data.

Further studies underline the models’ susceptibility to perturbations of the reasoning task.
Shi et al. (2023) find that LLMs such as code-davinci-002 and GPT-3.5 can be distracted
by context irrelevant to the MWP solution, especially when the irrelevant context shares
lexical similarities with the original problem formulation. In a similar vein, Stolfo et al.
(2023) report that LLMs are sensitive to interventions on MWPs, such as changing numerical
values or altering the textual framing of the problem.

Other studies investigate whether human-like reasoning behavior in mathematical tasks
manifests in LLMs. Hagendorff et al. (2023) show that, akin to humans, GPT-3 variants
tend to offer intuitive yet incorrect answers to cognitive reflection tests (Frederick, 2005).
Notably, GPT-3.5 and GPT-4 provide more deliberate responses, outperforming humans in
avoiding intuitive errors. At the same time, McKenzie et al. (2023) demonstrate a form of
goal misgeneralization, where models, tasked with rounding numbers to a specific number
of significant digits, consistently round based on the number of decimal places. This reflects
a cognitive bias known as attribute substitution (Morewedge & Kahneman, 2010), where a
more challenging task is replaced with a simpler, related task. In a mechanistic evaluation,
Chen et al. (2024a) conduct a layer-wise analysis of LLaMA’s mathematical reasoning
capabilities, discovering that higher layers exhibit superior mathematical problem-solving
abilities, while lower layers seem to lack basic arithmetic and factual knowledge.
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3.3 Behavior in Causal Reasoning Tasks

Causal reasoning is the process of discerning the cause-and-effect relationships that govern
the dynamics of our environment (Sloman, 2005). Extending beyond correlation, it offers a
more nuanced understanding of how changes in one variable can bring about changes in
another (Pearl, 2009). For a comprehensive introduction to causal reasoning, we strongly
recommend the work of Pearl (2009). While research on the behavior of LLMs in causal
reasoning tasks is still in its early stages, the field is receiving growing attention. Various
studies to date suggest that LLMs are capable of reciting causal facts from their training
data, but lack an intrinsic ability to comprehend or construct causal relationships. For
instance, Zecevic et al. (2023) indicate that while LLMs, including GPT-3, Meta Al’s Opt,
and AlephAlpha’s Luminous (AlephAlpha, 2022), demonstrate some proficiency in causal
reasoning tasks that align with causal facts seen during training, they exhibit limited ability
to accurately discern and apply causal relationships in scenarios that demand more than
associative recalls from their training data. Jin et al. (2023) probe the models’ behavior across
three levels of causation: (1) the associational, (2) the interventional, and (3) the counterfactual,
as outlined by Pearl & Mackenzie (2018)’s Ladder of Causation. Similarly, their findings
indicate that LLMs are more adept at answering associational queries than tackling interven-
tional or counterfactual tasks. Models seem to particularly struggle with causal relationships
that deviate from commonsense or are unlikely to be part of their training corpora. Jin
et al. (2024) evaluate the ability of LLMs to infer causation from statements that describe
correlations between variables. Analyses reveal significant challenges in solving the given
task across seventeen LLMs. Although fine-tuning offers substantial improvements, models
still fail to generalize in out-of-distribution scenarios. Kosoy et al. (2023)’s evaluation of
GPT-3 and PalLM on the blicket detector task (Gopnik & Sobel, 2000), where models need
to infer which objects cause a light to switch on, further highlights challenges in causal
reasoning with LLMs. While models can identify the correct causal structure when a set of
causal hypotheses is provided, they struggle in conditions where the hypotheses are not
given, underscoring a limitation in their ability to infer causal relationships from limited
data.

Behavior in Counterfactual Reasoning Tasks. Positioned at the last level of Pearl &
Mackenzie (2018)’s Ladder of Causation, counterfactual tasks assess the models’ ability to
reason about hypothetical scenarios. Research into the behavior of LLMs in counterfactual
scenarios reveals notable challenges in current models. Studies, like those conducted by
Frohberg & Binder (2022), focus on the ability of LLMs to predict outcomes in hypothetical
setups, identifying a significant gap between the capabilities of humans and LLMSs, partic-
ularly in highly unrealistic scenarios. Li et al. (2023) further illustrate that while models
like GPT-3 can produce outcomes that seem to align with counterfactual propositions, these
models heavily rely on simple lexical cues within the given context, rather than demonstrat-
ing a profound grasp of the scenarios” hypothetical essence. Yu et al. (2023) evaluate LLMs
on questions embedded in counterfactual presuppositions, pushing the models beyond
simple fact retrieval. Their findings suggest that “closed-book” models such as GPT-3 and
code-davinci-002 may fabricate facts or base their responses on flawed premises when
answering counterfactual questions. Huang et al. (2024) explore a different angle by asking
models to modify a given piece of argumentative text so that it upholds a specified logical
relationship under new premises. Findings indicate that while LLMs like GPT-3.5 and GPT-4
demonstrate a capacity for solving such tasks, they struggle with modifying arguments
such that a new premise makes the argument less likely to be true, an observation also made
by Rudinger et al. (2020) in the context of abductive reasoning.

Summary. Regarding RQ1, our review suggests that the reasoning behaviors of LLMs
are nuanced and diverse, yet a significant trend emerges: while current LLMs demonstrate
proficiency in reasoning problems that align with their training distribution, they frequently
encounter substantial conceptual difficulties in out-of-distribution scenarios. Notably, slight
alterations in the task context can markedly impair the models’ reasoning capabilities.
Multi-step reasoning is often reduced to shortcut pattern matching, and fundamental
conceptual errors highlight the models’ deficiency in understanding basic principles of logic,
mathematics, and causal reasoning, particularly in counterfactual setups.
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Figure 2: A taxonomy of evaluation methods to analyze the reasoning behaviors of LLMs.
Only representative approaches for each method are listed.

4 Evaluation Methods

So far, we have provided an overview of studies that evaluate the behavior of LLMs on
three core reasoning tasks. However, to date, a standardized methodology for assessing
the reasoning capabilities of large language models is lacking. To address RQ2, we review
and categorize predominant evaluation frameworks for analyzing the behavior of LLMs in
reasoning tasks. As depicted in Figure 2, we categorize evaluation methodologies into four
distinct groups: (i) conclusion-based, (ii) rationale-based, (iii) interactive, (iv) and mechanistic
evaluations. In the following sections, we further delineate each category by discussing
prevalent techniques. An overview of the advantages and disadvantages of each evaluation
procedure can be found in Table 1. Additional details are provided in Appendix B.

4.1 Conclusion-Based Evaluation

In conclusion-based evaluation schemes, emphasis is placed on the model’s final answer
rather than the process by which the model arrives at its conclusion. This outcome-oriented
approach, despite its limitation of overlooking the model’s rationales, can nonetheless
provide insights into the model’s reasoning behavior. For instance, a thorough error analysis
can unveil conceptual errors (Sanyal et al., 2022), reflections of cognitive biases (Dasgupta
et al., 2022), or sensitivities to the task context (Wu et al., 2024). Similarly, an examination of
the model’s output distribution may reveal inherent predispositions towards certain outcomes
(Itzhak et al., 2024), or serve as an indicator of the model’s confidence in specific conclusions
(Frohberg & Binder, 2022). However, relying solely on the model’s final conclusion can be
less reliable than also considering how the model arrives at its conclusion. For example,
candidate answers derived from first token probabilities in multiple-choice setups are often
not robust (Wang et al., 2024b), and final answers might not always align with the model’s
verbalized reasoning (Mondorf & Plank, 2024; Ye & Durrett, 2022). Moreover, answers to
benchmark datasets might have been compromised by data leakage during the model’s
training process, limiting the insights that can be drawn from a correct conclusion (Balloccu
et al., 2024; Xu et al., 2024). To address the issue of data contamination and test the model’s
capacity to generalize, dynamic benchmarks can be employed that update over time. For
instance, functional benchmarks capture the underlying reasoning process rather than a
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static problem formulation, probing the model’s reasoning capabilities on dataset snapshots
released quarterly (Srivastava et al., 2024).

4.2 Rationale-Based Evaluation

In contrast to conclusion-based evaluation schemes, rationale-based evaluation methods
focus on examining the reasoning trace generated by the model, typically assessing its
logical validity and coherence. While this approach allows for more nuanced insights
into the model’s reasoning behavior, rationale-based evaluation schemes are often more
challenging to automate and scale. Given the variability in the model’s reasoning, a spectrum
of assessment techniques exist. For rationales following a highly consistent format—either
through structured contexts or methods that guide the model’s response style (Wan et al.,
2024)—rationales can be parsed into more formalized representations such as first-order
logic (Saparov & He, 2023), computation graphs (Dziri et al., 2023), or causal graphs (Willig
et al., 2022), facilitating a more granular examination. Alternatively, interpretable quantitative
metrics, such as ROSCOE (Golovneva et al., 2023) or RECEVAL (Prasad et al., 2023), may
be utilized to evaluate the rationales” semantic alignment with the reasoning task, their
coherence, factual consistency, and logical validity. In instances where rationales are less
structured, qualitative inspections are commonly employed, either through diagnostic
agents (Huang et al., 2024), or human judgments (Mondorf & Plank, 2024).

4.3 Interactive Evaluation

Similar to the principle of dynamic assessment within psychology (Haywood & Tzuriel,
2002), interactive evaluation offers a framework to engage with LLMs during the evaluation.
This approach allows for more flexible assessments tailored to the model’s specific reasoning
behavior. Although such evaluations are often costly and challenging to scale, several
techniques have been developed to automate the process. For instance, adaptive evaluations
dynamically select reasoning tasks based on the model’s responses, thus providing deeper
insights into its capabilities and limitations beyond what static questionnaires can reveal
(Zhuang et al., 2023). Dialectic evaluation methods assess the model’s reasoning in dialogue
form, for example, by challenging the model’s conclusions (Wang et al., 2023), or engaging
it in game-theoretical scenarios (Bertolazzi et al., 2023). While interactive evaluations yield
nuanced insights, they lack the structure of traditional methods, posing challenges in terms
of standardization and reproducibility.

4.4 Mechanistic Evaluation

Mechanistic evaluations of LLMs delve into the underlying processes that drive the model’s
responses, aiming to uncover the “how” and “why” within their reasoning processes. By
analyzing the internal mechanisms such as attention patterns (Hou et al., 2023), activation
flows (Dutta et al., 2024), and the functional attributes of individual layers (Pirozelli et al.,
2023), deeper insights into the model’s operational logic can be gained, as illustrated
in Section 3.1.1. Focusing on the model’s intrinsic processes, this framework contrasts
with previous approaches, drawing parallels to the study of human reasoning from a
neuroscientific perspective (Papo, 2015). Nonetheless, current methods remain compute-
intensive, and their findings may not always generalize across different models and tasks
(Bereska & Gavves, 2024; Ferrando et al., 2024).

5 Discussion

Despite the notable performance of large language models in prominent reasoning tasks
(Bubeck et al., 2023; Fu et al., 2023), our review suggests that current models more closely
resemble stochastic parrots (Bender et al., 2021) than systematic reasoners. As discussed in
Section 3, we find that although many LLMs demonstrate proficiency in reasoning problems
that align with their training data, the models’ reasoning behavior reveals significant con-
ceptual errors and limitations in out-of-distribution scenarios. As highlighted by Mahowald
et al. (2024), this suggests a limited functional linguistic competence in LLMs. It is likely



Published as a conference paper at COLM 2024

Evaluation Method Advantages Disadvantages

Conclusion-based evaluation  Allows for controlled setups Limited insights
Provides metrics for comparison  Less reliable
Easy to automate and scale
Easy to reproduce

Rationale-based evaluation Offers more nuanced insights Difficult to automate and scale
More robust in certain scenarios ~ Might require expert interpretation

Interactive evaluation Highly flexible Expensive
Customizable to model behavior  Difficult to automate and scale
Less standardized and reproducible

Mechanistic evaluation Identifies features or circuits re- Findings may not generalize across
sponsible for specific behaviors tasks or models
Supports direct interventions on  Results may be hard to interpret
model internals Compute-intensive

Table 1: Comparison of strengths and limitations of the different evaluation methods.

that the apparent success of LLMs in reasoning tasks predominantly reflects their ability to
memorize the extensive data they have been trained on (Wu et al., 2024; Dziri et al., 2023).
Recent studies indicate that a substantial amount of benchmark datasets has been leaked
to current LLMs (Balloccu et al., 2024; Xu et al., 2024), raising concerns about the insights
derived from their performance on such benchmarks. Therefore, we advocate for more
nuanced analyses of the models’ reasoning behavior, particularly in novel scenarios that the
models have not previously encountered.

While human reasoning is not infallible (Johnson-Laird, 2010), the human capacity for
robust reasoning and generalization from limited data remains unmatched by current LLMs.
Various studies point to the fundamental differences between human reasoning and that of
LLMs, especially the models’ restrictive autoregressive pre-training objective (McCoy et al.,
2023; Shanahan, 2024; Lenci, 2023). We call for further research—particularly on reasoning
behavior—within both humans and LLMs to better discern and comprehend the essential
components missing in LLMs, which are crucial for robust and systematic reasoning.

6 Conclusion

This survey provides a comprehensive review of literature that evaluates LLM-based rea-
soning beyond mere task accuracy, offering deeper insights into the reasoning behavior
of large language models. We discuss the behavior of LLMs across three core reasoning
tasks (RQ1), assessing logical, mathematical and causal reasoning. Furthermore, we outline
predominant evaluation frameworks and compare their respective strengths and limitations
(RQ2). Our findings indicate that although LLMs demonstrate proficiency in reasoning
problems that align with their training data, they often encounter significant conceptual
challenges in out-of-distribution scenarios. Considering these insights and the recent issue
of benchmark dataset leakage (Balloccu et al., 2024; Xu et al., 2024), we caution against
relying solely on shallow accuracy metrics for static reasoning tasks. Instead, we advocate
for more sophisticated reasoning assessments, such as those discussed in Section 4.
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A Human-Like Reasoning Behavior in LLMs

Recent research has begun to explore the extent to which human reasoning behaviors are
reflected in large language models, given their training on human-generated data. Various
studies delve into the manifestation of human-like reasoning behaviors within LLMs in the
context of deductive reasoning tasks. For instance, Eisape et al. (2024) compare the behaviors
of humans and LLMs, particularly those from the PaLM 2 series, in syllogistic reasoning
tasks. The findings reveal that, similar to humans, LLMs are prone to logical fallacies and
cognitive biases such as ordering effects. This susceptibility persists across model sizes,
though larger models tend to engage in more deliberate reasoning, showing a reduced sen-
sitivity towards these errors. A notable finding indicates that LLMs, unlike humans, rarely
produce the “nothing follows” response, even when it represents the accurate deduction.
In a similar vein, Dasgupta et al. (2022) demonstrate that LLMs, akin to humans, exhibit
content effects in predicate logic problems, i.e. their reasoning is influenced by the semantic
content of the task. This effect is evident in various LLMs including ChatGPT, PaLM 2, and
Chinchilla (Hoffmann et al., 2022). In particular, analyses indicate that the models’ reasoning
in syllogisms is biased by the believability of the conclusion, a behavior known as belief
bias (Klauer et al., 2000). Further research corroborates the influence of semantic content on
the models’ reasoning. Ando et al. (2023) demonstrate a belief-bias in models like ChatGPT,
RoBERTa and BART (Lewis et al., 2020) by comparing the models” behavior on abstract,
belief-consistent, and belief-inconsistent syllogisms. Their analyses also uncover a predispo-
sition towards conversion errors and atmosphere effects, where logical quantifiers are either
misinterpreted or lead to uninformed inferences, respectively (Tversky & Kahneman, 1974).
Itzhak et al. (2024) further show that methods such as instruction tuning and reinforcement
learning from human feedback (RLHF) (Ouyang et al., 2022) may amplify cognitive biases
within LLMs. Mondorf & Plank (2024) delve into the inferential strategies of open-access
LLMs in problems of propositional logic. Comprehensive manual evaluations of the models’
rationales reveal that LLMs utilize inferential strategies similar to those employed by human
reasoners. Their evaluations further underline difficulties of LLMs with logical negations
and a vulnerability to logical fallacies commonly observed in human reasoning. Similarly,
McKenzie et al. (2023) indicate that LLMs tend to replicate human-like logical errors when
engaging with the logical principle of modus tollens, suggesting an imitation of flawed
reasoning patterns from their training data. Notably, this trend becomes more pronounced
with increasing model size, a phenomenon denoted as inverse scaling.
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B Further Details on Evaluation Methods

In this section, we offer a more detailed overview of the evaluation frameworks commonly
employed to examine the reasoning behavior of large language models. Expanding on the
taxonomy depicted in Figure 2, we present conclusion-based evaluation methods in Table 2,
provide an overview of rationale-based evaluation approaches in Table 3, discuss interactive
evaluation techniques in Table 4, and delineate mechanistic evaluation strategies in Table 5.

Category

Evaluation Method

Description

Exemplary Reference

Output Distribution
Analysis

Model Preference

Model Confidence

Evaluate the likelihood of various candidate answers from
a predefined set to assess the model’s tendency towards
specific answers.

Interpret the probability assigned to an answer as a mea-
sure of confidence towards that answer.

Itzhak et al. (2024)

Dasgupta et al. (2022)

Error Analysis

Conceptual Errors
Context Sensitivity
Cognitive Biases

Inverse Scaling

Assess the model’s errors with respect to fundamental
principles and concepts within the domain of reasoning.
Evaluate the model’s robustness towards perturbations of
the task’s context.

Probe the model with respect to cognitive biases or heuris-
tics commonly encountered in human reasoning.
Analyze scenarios in which larger models tend to exhibit
more pronounced errors than smaller models.

Sanyal et al. (2022)
Wu et al. (2024)
Eisape et al. (2024)

McKenzie et al. (2023)

Dynamic Benchmarks

Functional
Benchmarks

Transform static benchmarks in question-answer format
into functional form, where triplets of (problem, solution,
input) are defined that represent the underlying reasoning
process of the task, and thus allow to produce flexible
question-answer pairs.

Srivastava et al. (2024)

Table 2: Overview of conclusion-based evaluation methods that assess the model’s reasoning
behavior by focusing on the final answers they produced.

Category

Evaluation Method

Description

Exemplary Reference

Structured Parsing

FOL Conversion

Computational
Graphs

FACZE

Translate the model’s rationale into first-order-logic (FOL)
language and evaluate the logical expressions.

Parse the rationale into a computation graph where ver-
tices represent intermediate results and edges denote func-
tion mappings.

Use capability-specific instructions to elicit intermediate
structured reasoning steps (crystallized and fluid reason-
ing). Evaluate each step separately, using ground truth
responses and the BARTScore-Recall metric.

Saparov & He (2023)

Dziri et al. (2023)

Wang et al. (2024a)

Interpretable
Quantitative Metrics

ROSCOE

ReCEval

Assess the model’s rationale using a suite of nuanced
metrics, quantifying its semantic alignment, semantic sim-
ilarity, logical inference, and language coherence.
Analyze the model’s rationale using metrics that quantify
its intra-step and inter-step logical validity, as well as the
informativeness of each reasoning step.

Golovneva et al. (2023)

Prasad et al. (2023)

Qualitative Inspection

Human Evaluator
Diagnostic Agents

Inspect rationales manually through human annotators.

Assess rationales by means of additional language models,
acting as diagnostic agents.

Mondorf & Plank (2024)
Huang et al. (2024)

Table 3: Rationale-based evaluation methods that examine the model’s reasoning behavior
through an analysis of its underlying rationale.
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Category Evaluation Method Description Exemplary Reference
Computerized
Adaptive Evaluation Adaptive Testing Dynamically adapt questions presented during the evalu- Zhuang et al. (2023)
(CAT) ation procedure based on the model’s responses.
Dialectic Evaluation Belief Defense Test the model’s reasoning through challenging its prior Wang et al. (2023)

response in a conversational discourse.

Game-Theoretic

Analysis Evaluate the model’s reasoning by engaging with it in a Bertolazzi et al. (2023)

game-theoretic scenario.

Table 4: Interactive evaluation techniques designed to assess the model’s reasoning behavior
through dynamic interaction.

Evaluation Method Description Exemplary Reference
Layer Probing Probe the functional role of different layers of the model’s architecture. Pirozelli et al. (2023)
Atention Pgttem Analyze the model’s attention matrices to gain insights into the underlying informa- Hou et al. (2023)
Analysis . L
tion flow within the model.
Activation Patching Alter specific neuron activations within a model and observe its impact on the model’s Dutta et al. (2024)

output.

Table 5: Overview of mechanistic evaluation methods that assess the model’s reasoning by
delving into its internal mechanisms throughout the reasoning process.
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