
The Dual Form of Neural Networks Revisited: Connecting Test Time Predictions
to Training Patterns via Spotlights of Attention

Kazuki Irie∗ 1 Róbert Csordás∗ 1 Jürgen Schmidhuber 1 2

Abstract

Linear layers in neural networks (NNs) trained
by gradient descent can be expressed as a key-
value memory system which stores all training
datapoints and the initial weights, and produces
outputs using unnormalised dot attention over the
entire training experience. While this has been
technically known since the 1960s, no prior work
has effectively studied the operations of NNs in
such a form, presumably due to prohibitive time
and space complexities and impractical model
sizes, all of them growing linearly with the num-
ber of training patterns which may get very large.
However, this dual formulation offers a possibility
of directly visualising how an NN makes use of
training patterns at test time, by examining the cor-
responding attention weights. We conduct experi-
ments on small scale supervised image classifica-
tion tasks in single-task, multi-task, and continual
learning settings, as well as language modelling,
and discuss potentials and limits of this view for
better understanding and interpreting how NNs
exploit training patterns. Our code is public†.

1. Introduction
Despite the broad success of neural nets (NNs) in many
applications, much of their internal functioning remains
obscure. Naive visualisation of their activations or weight
matrices rarely shows human-interpretable patterns, with
the occasional exception of certain special structures such
as filters in convolutional NNs trained for image processing
(Zeiler & Fergus, 2014), attention weights (Bahdanau et al.,

*Equal contribution 1The Swiss AI Lab, IDSIA, USI & SUPSI,
Lugano, Switzerland 2AI Initiative, King Abdullah University of
Science and Technology (KAUST), Thuwal, Saudi Arabia. Corre-
spondence to: <{kazuki, robert, juergen}@idsia.ch>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

†https://github.com/robertcsordas/linear_
layer_as_attention

2015) or the sequential Jacobian (Graves, 2008) in sequence
processing, or, to a limited extent, the distribution of in-
dividual word embeddings in natural language processing
(NLP) (Mikolov et al., 2013). In many ways, NNs remain
blackboxes. In particular, while iteratively trained on a large
number of datapoints, the entire training experience gets
somehow compressed (through lossy compression) into a
fixed size weight matrix, which may be useful for mak-
ing predictions on yet unseen datapoints, although the raw
values of weights are not easily human-interpretable.

While it is debatable whether this lack of interpretability is
a problem, it makes it hard for humans to explain certain
practical results obtained by NNs—especially those trained
on a vast amount of data. For example, how can big lan-
guage models such as GPT-3 (Brown et al., 2020) generate
an answer to a question never seen during training, translate
languages without being trained to do so, or solve previ-
ously unseen math problems? How can DALL-E (Ramesh
et al., 2021) generate various pictures of a radish walking
a dog or a banana performing stand-up comedy without
training examples containing such images1? Perhaps there
have been at least some pictures of “radish” and others rep-
resenting the concept of “walking a dog” among the training
samples, and somehow the model interpolated them2. If so,
is it possible to point out exactly which training samples are
the original sources of that specific output?

Here we propose to revisit the dual form of the perceptron
(Aizerman et al., 1964) and apply it in the modern context
of deep NNs, with the objective of better understanding how
training datapoints relate to test time predictions in NNs.
Essentially, the dual form expresses the forward operation of
any linear layers in NNs trained by gradient descent (GD) as
a key/value/query-attention operation (Vaswani et al., 2017)
where the keys and values are training datapoints and the
query is generated from the test input (details in Sec. 3).
This allows for directly connecting test time predictions to
training datapoints. To the best of our knowledge, no prior
work has studied deep NNs in their dual form, which is

1We assume that this was the case.
2Here by “interpolate”, we informally mean “combine”. For a

discussion based on a formal definition of “interpolation”, see e.g.,
Balestriero et al. (2021).

https://github.com/robertcsordas/linear_layer_as_attention
https://github.com/robertcsordas/linear_layer_as_attention

The Dual Form of Neural Networks Revisited

not surprising, considering certain obvious computational
drawbacks (see Sec. 3).

Importantly, none of the mathematical results we’ll discuss
is novel: originally introduced by Aizerman et al. (1964),
the presentation of the perceptron (Rosenblatt, 1958) in its
primal and dual forms is well-known and often repeated in
the literature and in textbooks (Schölkopf & Smola, 2002;
Bishop, 2006), especially in the context of support vector
machines (Boser et al., 1992; Burges, 1998), for the case
where the output of a linear layer is one-dimensional (i.e.,
its weight matrix reduces to a vector). Unlike prior works,
however, our focus is on the dual form of linear layer oper-
ations based on weights in matrix form (arguably the most
frequently used operations in NNs) inside a deep NN trained
by gradient descent. Also, while there is no technical gain in
expressing the dual form in terms of key-value/attention con-
cepts (Vaswani et al., 2017; Miller et al., 2016; Sukhbaatar
et al., 2015; Graves et al., 2014), such a formulation has
become very popular since the advent of Transformers
(Vaswani et al., 2017), and we believe many modern readers
will find our equations straightforward to interpret.

As a first empirical work analysing deep NNs under this
view, our main experiments are based on small scale models
and datasets in image classification and language modelling.
For image classification, we analyse feedforward NNs with
two hidden layers using the MNIST (LeCun et al., 1998)
and Fashion-MNIST (Xiao et al., 2017) datasets. We start
with the single task scenario to illustrate our basic approach.
Then we investigate multi-task and continual learning sce-
narios. Finally, we conduct a similar analysis in the NLP
domain. We train language models based on long short-term
memory recurrent NNs (Hochreiter & Schmidhuber, 1997)
on a small public domain book and the WikiText-2 dataset
(Merity et al., 2017).

2. Preliminaries
The results presented here are preliminary in the sense that
they are prerequisites needed to derive and express the core
results of Sec. 3. While all proofs are trivial, and some of
the results are well-known, we still opt for presenting them
in detail, in the form Definition/Lemma/Proposition (and
Corollary later in Sec. 3) to concisely highlight the core con-
cepts and their relations in a self-contained manner. Please
refer to our Related Work Section 4 for further comments
and references.

We first introduce the two following definitions used
throughout this paper. In what follows, let din, dout and
T denote positive integers.

Definition 2.1 (Unnormalised Dot Attention). Let K =
(k1, ...,kT) ∈ Rdin×T and V = (v1, ...,vT) ∈ Rdout×T de-
note matrices representing T key and value vectors. Let

q ∈ Rdin denote a query vector. An unnormalised lin-
ear dot attention operation Attention(K,V , q) (“attention”
for short) computes the following weighted average of value
vectors vt:

Attention(K,V , q) =

T∑
t=1

αtvt (1)

where the weights αt = k⊺
t q ∈ R are dot products between

key kt and query q vectors, and are called attention weights.

Lemma 2.2. Attention computation defined above can be
expressed as:

Attention(K,V , q) = V K⊺q (2)

Proof.

Attention(K,V , q) =

T∑
t=1

αtvt =

T∑
t=1

vtαt (3)

=

T∑
t=1

vtk
⊺
t q =

(T∑
t=1

vtk
⊺
t

)
q (4)

we obtain Eq. 2 since the term in the parentheses is:

T∑
t=1

vtk
⊺
t =

T∑
t=1

vt ⊗ kt = V K⊺ (5)

where ⊗ denotes the outer product.

Remark 2.3. Obviously, referring to the equations above
as attention (or unnormalised attention) emphasizes the re-
lation to the regular softmax normalised dot product atten-
tion (Luong et al., 2015; Bahdanau et al., 2015) which is
V softmax(K⊺q) using the notations above. We also note
that Schmidhuber (1993) referred to the unnormalised atten-
tion used in the context of fast weight controllers as “internal
spotlights of attention.”
Definition 2.4 (Equivalent Systems, for shortcut). Two sys-
tems S1 and S2 defined over the same input and output
domains Din and Dout, are said to be equivalent if and only
if for any input, their outputs are equal, i.e., for any x ∈ Din,
the following holds

S1(x) = S2(x) (6)

This allows us to informally talk about “equivalence” be-
tween two models regardless of their computational com-
plexities (which might differ).

The following proposition expresses a general statement on
the duality between the linear transformation with a fixed
size weight matrix constructed as a sum of outer-products
between two known vectors and an arbitrary size attention-
based key-value memory. We apply this result later in the
case of linear layers in an NN trained by gradient descent.

The Dual Form of Neural Networks Revisited

Figure 1. The primal form of a linear layer to be contrasted with
the dual form in Figure 2.

Proposition 1 (Attention/Linear Layer Duality). Let K =
(k1, ...,kT) ∈ Rdin×T and V = (v1, ...,vT) ∈ Rdout×T

denote matrices with T column vectors. The following two
systems S1 and S2 are equivalent:

S1 (Linear layer): A system consisting of one weight matrix
W ∈ Rdout×din constructed as:

W =

T∑
t=1

vt ⊗ kt (7)

which transforms input x ∈ Rdin to output S1(x) ∈ Rdout

as:

S1(x) = Wx (8)

S2 (Attention layer): A system consisting of memory storing
T key-value pairs (k1,v1), .., (kT ,vT) which transforms
input x ∈ Rdin to output S2(x) ∈ Rdout as:

S2(x) = Attention(K,V ,x) (9)

Proof. We have almost shown this already in Eq. 5. Given
x ∈ Rdin , K = (k1, ...,kT) ∈ Rdin×T and V =
(v1, ...,vT) ∈ Rdout×T , by starting from the form of at-
tention shown in Lemma 2.2, we obtain

S2(x) = Attention(K,V ,x) = V K⊺x (10)

=
(T∑
t=1

vt ⊗ kt

)
x = Wx = S1(x)

This is essentially a general formulation of calculation used
to show the equivalence between linear models and kernel
machines in the 1960s (Aizerman et al. (1964); cf. Related
Work Sec. 4). We express it for an arbitrary weight ma-
trix constructed as a sum of outer-products, and using the
modern language of key-value/attention.

3. The Dual Form of Linear Layers in NNs
Trained by Gradient Descent

The following corollary obtained from the proposition above
is the core result explored in the experimental section. It
expresses the dual form of a linear layer trained by gradient

Figure 2. The dual form of a linear layer trained by gradient de-
scent is a key-value memory with attention storing the entire train-
ing experience. Compare to the primal form in Figure 1.

descent as a key-value system storing training patterns as
key-value pairs, which computes the output from a test query
using attention over the key-value memory.

This duality is illustrated in Figures 1 and 2.

Corollary 1 (Dual Form of a Linear Layer Trained by GD).
The following two systems S1 and S2 are equivalent:

S1 (Primal form): A linear layer in a neural network trained
by gradient descent in some error function using T training
inputs to this layer (x1, ...,xT) with xt ∈ Rdin and corre-
sponding (backpropagation) error signals3 (e1, ..., eT) with
et ∈ Rdout obtained by gradient descent. Its weight matrix
W ∈ Rdout×din is thus:

W = W0 +

T∑
t=1

et ⊗ xt (11)

where W0 ∈ Rdout×din is the initialisation. The layer trans-
forms input x ∈ Rdin to output S1(x) ∈ Rdout as:

S1(x) = Wx (12)

S2 (Dual form): A layer which stores T key-value pairs
(x1, e1), .., (xT , eT) i.e., a key matrix X = (x1, ...,xT) ∈
Rdin×T and a value matrix E = (e1, ..., eT) ∈ Rdout×T ,
and a weight matrix W0 ∈ Rdout×din which transforms input
x ∈ Rdin to output S2(x) ∈ Rdout as:

S2(x) = W0x+Attention(X,E,x) (13)

Proof. The result is trivially obtained by applying Proposi-
tion 1 to Attention(X,E,x) in Eq. 13.

We note that unlike the primal form, the computational com-
plexity of the dual form S2 above depends on the number of
training datapoints T the layer is trained on (i.e., the number

3In the case of standard gradient descent using a loss L, et =
−ηt(∇yL)t where ηt ∈ R is the learning rate and yt = Wtxt is
the output of the linear layer using the weight matrix Wt at step t.

The Dual Form of Neural Networks Revisited

of all inputs forwarded to the linear layer during training for
which the loss is computed; that is, in a typical mini-batch
stochastic gradient descent setting, the batch size times the
number of training iterations). The time and space com-
plexities of the Attention computation in Eq. 13 is linear
in T , while T can be potentially very large. The model size
is especially prohibitive in practical scenarios: the parame-
ters of the dual form are the (dout × din)-dimensional initial
weight matrix W0 —whose size already equals the number
of parameters in the primal form— and the ((din+dout)×T)-
sized key-value memory recording all training datapoints.
The dual form is thus not a practical form for regular set-
tings. Indeed, this duality of Proposition 1 has been used
in the converse direction to obtain time and space efficient
attention computation (see Sec. 4/Linear Transformers).

However, there are also benefits in viewing NNs under the
dual form. It explicitly shows that the output of an NN
linear layer trained by backpropagation is mainly a linear
combination of the training error signals et the layer re-
ceives during training:

∑T
1 αtet, where the weights αt are

computed by comparing the test query to each training input.
This is potentially more interpretable than the primal form
as the attention weights αt = x⊺

t x should indicate which
training datapoints are “activated” for a given test input. The
main contribution of this paper is to effectively implement
this dual form and visualise the corresponding attention in
different scenarios in Sec. 5. Eq. 13 reveals further notable
properties listed as remarks as follows:

Remark 3.1 (Nothing is “forgotten”). In a system ex-
pressed as in the dual form S2 of Corollary 1, nothing is
forgotten. The entire life of an NN is recorded and stored
as a key matrix X and value matrix E. Roughly speaking,
the only limitation of the model’s capability to “remember”
something is the limitation of the retrieval process (we illus-
trate this in the continual learning experiments in Sec. 5.4).
Also, note that the Attention computation in Eq. 13 remains
invariant if we shuffle the order of columns in the key-value
storage, as it is carried out without any explicit positional
encoding (similarly to auto-regressive attention (Irie et al.,
2019; Tsai et al., 2019) in some Transformer language mod-
els). The time information is naturally encoded into the key
and value vectors (except for the key vector in the first layer)
tracking the recurrence of the training process in time.

Remark 3.2 (Unlimited memory size is not necessarily use-
ful). This duality also illustrates an important fact (which
might seem counter-intuitive at first glance) that systems
which store everything in memory by increasing its size for
each new event (S2) are not necessarily better than those
with a fixed size storage (S1). The retrieval mechanism
has to be powerful enough to exploit the stored memory.
Potentially, we might obtain better models by using other
more powerful kernels (e.g., softmax, like in the standard
Transformers) in the Attention computation in Eq. 13. That

would, however, require to use the dual form even during
training, which is prohibitive.
Remark 3.3 (Orthogonal Inputs). If an input x was or-
thogonal to all training input patterns, the output of the
linear layer would be W0x (as Attention(X,E,x) = 0 in
Eq. 13), i.e., the weights learned by gradient descent would
not contribute to the output.
Remark 3.4 (Non-Uniqueness). We note that the expression
of a linear layer as an attention system is not unique. Some
tensor product decompositions can be applied to a trained
weight matrix to obtain a more compact attention system. A
clear benefit of the one presented in Corollary 1, however,
is that it explicitly relates test inputs to training datapoints.
Remark 3.5 (Self-Attention as Two Level Retrieval).
Since this duality is valid for any linear layer trained by
gradient descent, and such a linear layer is ubiquitous in
any NN, viewing a well known NN architecture from this
view could give extra insights and interpretation. For ex-
ample, the main transformation in a common self-attention
(Vaswani et al., 2017) is a linear projection layer which
transforms the input to key/value/query vectors. Under the
dual form, this can be viewed as a hierarchical retrieval layer
where the projection layer conducts a first level of retrieval
using unnormalised dot attention on the training datapoints.
The second, regular softmax attention conducts a second
level of retrieval among those selected by the first level.

4. Related Work
Relating Kernel Machines and NNs. As stated in Sec. 1,
the theoretical results we show in Sec. 2 and 3 are special
cases or trivial extensions of the lines of works connecting
kernel machines and neural networks derived and presented
in different contexts. Most importantly, it is well known that
the perceptron (Rosenblatt, 1958) has primal and dual forms
as pointed out by Aizerman et al. (1964). The corresponding
result is often presented in the case where the co-domain
of the linear layer is one-dimensional (i.e., the weight ma-
trix reduces to a weight vector), especially in the literature
on support vector and kernel machines (Boser et al., 1992;
Burges, 1998) and in textbooks (Schölkopf & Smola, 2002;
Bishop, 2006). In Sec. 3, we present the result in the case
of linear layers with matrix weights and expressed it in the
form of key-value memory which is particularly relevant
today (Vaswani et al., 2017). But we note that the same
statement could be made using the language of kernel ma-
chines as the unnormalised dot attention operation can be
expressed as:

Attention(X,A,x) + b =

T∑
t=1

atK(xt,x) + b (14)

where K denotes the dot product, at ∈ Rout and b ∈ Rout

are model parameters.

The Dual Form of Neural Networks Revisited

More recent work of Domingos (2020) presents a more
general statement: an entire multi-layer perceptron can be
approximated by a kernel machine. While this is a powerful
theoretical result, practical ways of exploiting it are yet to
be investigated. We study instead the dual form of each
linear layer in the network which can be obtained without
any approximation.

Transformer Feedforward Block as Key-Value Memory.
Another related but different line of works studies the feed-
forward block of Transformers as a key-value memory. This
feedforward block consists of two feedforward layers which
transform input vector x ∈ Rdin as follows:

FFN(x) = W2relu(W1x) (15)

with weight matrices W1 ∈ Rdff×din and W2 ∈ Rdin×dff ,
where dff denotes the inner dimension (we omit the biases).
The possibility to interpret this block as a key-value memory
with attention has been pointed out by the original authors of
Transformers (Vaswani et al., 2017)4. Essentially, replacing
relu by a softmax,

W2softmax(W1x) (16)

or in our context by removing relu, we can write it down
using unnormalised attention defined by Definition 2.1 as:

W2W1x = Attention(W ⊺
1 ,W2,x) (17)

Using this formulation, Sukhbaatar et al. (2019) proposed
to merge the feedforward block and the attention layer by
extending the context-dependent key/value vectors in the
regular self-attention with a fixed set of trainable key/value
vectors. More recently, Geva et al. (2021) asked the question
what information from the training data these key vectors
(i.e., rows of W1) contain. They compare the correspond-
ing keys to activation vectors of training examples, which
are obtained by computing the forward pass of the already
trained model on the training examples to be analysed. They
conduct such analyses for Transformer language models.

The view we explore here is different. Our statement is not
limited to Transformer feedforward blocks, but to any linear
layers trained by gradient descent, and we directly express
a linear layer as a function of the training datapoints.

Attention and Kernels. A number of recent works con-
nect attention and kernels (Tsai et al., 2019; Katharopoulos
et al., 2020; Choromanski et al., 2021; Peng et al., 2021).
While we also implicitly exploit the corresponding con-
nection (Eq. 14), our focus is on connecting the primal
form, i.e., linear layers trained by gradient descent, to key-
value/attention systems.

4See Appendix “Two feedforward Layers = Attention over Pa-
rameter” in version arXiv:1706.03762v3 of Vaswani et al. (2017).

Fast Weight Programmers and Linear Transformers.
As we noted while discussing the complexity of the dual
form in Sec. 3, the conversion from the primal to the dual
form of a linear layer we explore here (Proposition 1) is
used in prior works connecting Transformers with linearised
attention and fast weight programmers (Ba et al., 2016;
Katharopoulos et al., 2020; Schlag et al., 2021). Ba et al.
(2016) show the equivalence of unnormalised attention to
fast weight programmers of the ’90s (Schmidhuber, 1993).
Katharopoulos et al. (2020) convert the self-attention in
Transformers—whose complexity is quadratic in sequence
length—to a linear-complexity linear layer with fast weights
(Schmidhuber, 1991).

5. Experiments
We posit that the dual formulation of linear layers (Corol-
lary 1) offers a possibility to visualise how different training
datapoints (i.e., a set of input/error signal pairs seen dur-
ing training) contribute to some NN’s test time predictions.
Here we experimentally support this claim. We effectively
study NNs in their dual form and conduct analyses based on
the attention weights and related metrics described below.
We consider three different scenarios: single-task training,
multi-task joint training, and multi-task continual training
for image classification using feedforward NNs with two
hidden layers. We also conduct experiments with language
modelling using a one-layer LSTM recurrent NN.

5.1. Common Settings

We first describe settings which are common to all our ex-
periments. Since our primary interest is to analyse attention
weights of Eq. 13 which are simply dot products between a
test query x and each of the training keys xt, the general idea
is to train an NN on a given dataset by backpropagation as
usual, while recording all inputs to each linear layer during
training5. After training, attention weights for the trained
model for any test example for all training datapoints can be
computed by forwarding the test example to the model, to
obtain the input vector (test query) to each linear layer, then,
we compute the corresponding dot products with the stored
training inputs (training keys). We note that the training
procedure does not change.

Since storing the inputs to each linear layer for the entire
training experience can be highly demanding in terms of
disk space, we work with small datasets: MNIST (LeCun
et al., 1998) and Fashion-MNIST (Xiao et al., 2017) for
image classification6, WikiText-2 (Merity et al., 2017) and

5For analyses requiring information about the error signals et

(e.g., their norm), we also need to record those vectors.
6We also considered CIFAR-10 (Krizhevsky, 2009) but omit-

ted it as we did not achieve accuracies above 50% using small
feedforward NNs.

The Dual Form of Neural Networks Revisited

a small public domain book for language modelling. This
allows for obtaining well-performing models with small size
within a reasonably small number of training steps.

Our model for image classification has two hidden layers
with 800 nodes, each using relu activation functions after
each layer. This means that the model has three linear lay-
ers which we denote as layer-0, layer-1, and layer-2. The
first layer-0 transforms a gray-scale input image of size 768
(28×28) to a 800-dimensional hidden state, layer-1 trans-
forms it to another 800-dimensional hidden state, and finally
layer-2 projects it to a 10-dimensional output. The total
storage of training patterns is thus roughly 3×800×T units,
where T is the “number of training datapoints” counting
all examples across all training mini-batches. We train this
model using the vanilla stochastic gradient descent opti-
miser. We specify relevant metrics in the respective sections
below. Many more examples with visualisation are shown
in Appendix B.

(a) MNIST class 6 (b) F-MNIST class 9

Figure 3. Test examples used in Figures 4 & 5 (single task case)
and Figures 6 & 7 (multi-task joint training case), respectively.

5.2. Single Task Case

We start with the simple setting of image classification
where we train the two-hidden layer feedforward NN de-
scribed above on the MNIST dataset (LeCun et al., 1998).
This first analysis also serves as the base case for introduc-
ing the general idea and key metrics of our study. The model
is trained for 3 K updates using a batch size of 128 which
correspond to 384 K-long training key/value memory slots.
The resulting model achieves 97% accuracy on the test set.

The first plots we visualise are the attention weight “dis-
tribution” over training datapoints shown in Figures 4a-4c.
The test sample fed to the model in this example is from
class 6 (which is digit “6”), shown in Figure 3a, which is
correctly classified by the model. In these plots, datapoints
are grouped by target class, and for each class, datapoints
achieving the top-500 highest scores are shown in descend-
ing order (thus, a total of 5 K datapoints out of 384 K are
shown) for each layer7. While the scores are unnormalised,
these plots yield a qualitative picture of the attention “distri-
butions” over classes on the level of datapoints.

7We note that in layer-0, which is the input layer, the scores are
simply dot products between the flattened raw image data vectors.

However, this picture showing only the top-few-percent dat-
apoints does not capture how much of the attention weights
go to which class in total. In fact, in many cases, we notice
that the training datapoints which get the highest scores are
not necessarily from the correct class (as these top scores
may quickly decrease with the rank), while the model’s
output prediction is correct. For instance, in the example
shown in Figures 4a-4c, the input is an image from class 6
of MNIST (Figure 3a). We indeed see that training exam-
ples corresponding to class 6 are attended with high weights
in all layers, but we also see that some of the datapoints
for class 0 achieve comparable or higher scores than those
from the correct class 6. The corresponding top scoring
examples are visualised in Figures 10a-10f in Appendix A
which contain images from class 0. In order to visualise the
total attention weights assigned to each class, we present
Figures 5a-5c which show the sum8 of attention scores per
class. Here we observe that training datapoints from the
correct class label 6 are the most attended datapoints overall.
By examining multiple cases, we observe that the sum of
attention weights effectively correlates well with the model
output. To quantify this observation, we compute the cor-
responding correlation on the entire test set. Table 1 shows
the results. We observe that when the model’s prediction is
correct, the total attention weights correlate well with the
model output, especially in the late layers.

Table 1. Prediction accuracy (%) of the true target label (Target)
and model output (Output) from argmax of the per-class atten-
tion scores (like those in Figure 5), shown for each layer for two
cases whether the model’s output prediction is correct. Mean and
standard deviation computed for 5 runs. Layer-0 is the input layer.

Is Model Prediction Correct?

Layer No Yes

0 Target 17.2 ± 2.7 75.1 ± 0.0Output 49.5 ± 1.5

1 Target 18.0 ± 2.9 78.8 ± 0.8Output 52.9 ± 2.9

2 Target 20.6 ± 2.6 84.7 ± 1.1Output 60.1 ± 4.5

As a side note, we also considered an alternative version
where we augment the attention weights with the norm of
the error vector (value vector in Eq. 13). However, the re-
sulting plots did not show any consistent trend (presumably
because the norm disregards the signs of each component
of error/value vectors). In fact, in general, the heatmap of
attention weights (e.g., Vaswani et al. (2017); Bahdanau

8Here the sum is the sum of absolute values of attention scores
for the input layer, for which the scores might be negative. For
other layers, relu ensures positivity.

The Dual Form of Neural Networks Revisited

0 1 2 3 4 5 6 7 8 9

0.6

0.8

1.0

1.2
×103

(a) layer-0
0 1 2 3 4 5 6 7 8 9

6

8

×102

(b) layer-1
0 1 2 3 4 5 6 7 8 9

6

8

×102

(c) layer-2

Figure 4. Attention weights over training examples for the input test example from class 6 (Figure 3a) for the single task case on MNIST.
The x-axis is partitioned by class, and for each class, top-500 datapoints sorted in descending order are shown.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

×107

(a) layer-0
0 1 2 3 4 5 6 7 8 9

0

1

2

3

×107

(b) layer-1
0 1 2 3 4 5 6 7 8 9

0

1

2

3

×107

(c) layer-2

Figure 5. Total scores per class for the input test example from class 6 (Figure 3a) for the single task case on MNIST.

et al. (2015)) often reported in the literature also completely
disregards any information about the value vectors. Our
analysis is thus also purely based on attention weights, i.e.,
interaction between a test query and training key vectors.

Regarding the time information in layer-1 and layer-2 (it
does not matter in the input layer-0, since it is simply a dot
product between the raw images which contains no such
information), we find the distribution over time to be rather
spread out and noisy among the top-500 highest scoring
datapoints. We do not observe a clear pattern indicating that
the most recent training datapoints are more important.

5.3. Multi-Task Case

Now we extend the experimental setting above by training
models with the same architecture as above, but jointly
on two datasets: MNIST and Fashion-MNIST (F-MINST
for short). The output dimension remains 10. The model
is trained for 5,000 steps and achieves 97% and 87% test
accuracy on MNIST and F-MNIST, respectively.

In case of joint training, a natural question to ask is how the
attention behaves with two datasets and how much cross-
task attention occurs (i.e., high attention scores when key
and query are from different datasets). Intuitively, since
the output representation is shared (labels between 0 and
9), representations learned by the late layers might be task-
independent, and cross-task attention might take place. We
experimentally observe that this is indeed the case. Figures
6a-6c show the attention weights over training datapoints in
the case of joint training, analogous to Figures 4a-4c for the
single task case. The x-axis now shows 20 groups represent-

ing 10 classes from MNIST and 10 from F-MNIST. Figure
3b shows the test example fed to the model which is from
class 9 of F-MINST (“ankle boot”). On Figures 6a-6c, we
observe that, while in layer-0, top matching training data-
point are dominated by F-MNIST datapoints from the same
class, in layer-1 and layer-2, top attention weights are more
distributed across two tasks. Especially in layer-2, the top-3
matching examples (shown in Figures 11a-11e in Appendix
A) contain datapoints from MNIST, one of them belonging
to class 9. Analogous to the single task case, Figures 7a-7c
show the sum of weights for each class (separately for each
dataset). Another interesting observation: while the class
achieving the highest total attention scores in layer-0 is class
4 (“coat”) of F-MNIST (computed as a dot product between
the raw images), in later layers, the score of the correct label
9 is increased, which is not surprising if we expect the late
layers to yield better representations of inputs. This is a
visual illustration of the results we saw in Table 1 where
the argmax of the sum of attention weights correlates better
with the model output in the late layers.

5.4. Continual Learning Case

Finally we train models on the two datasets successively in
a continual learning fashion, first on MNIST for 3,000 steps,
then on F-MINST for 3,000 steps. The final test accuracies
are 85% on F-MNIST and 45% on MNIST (down from 97%
after training on MNIST only).

The continual learning case is particularly interesting from
the perspective of the dual form. Since all training patterns
are stored in the training key/value memory (Eq. 13), if we
used an attention mask on the F-MNIST part of training

The Dual Form of Neural Networks Revisited

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0.4

0.6

0.8

1.0

×103

MNIST
FashionMNIST

(a) layer-0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

3

4

5

×102

(b) layer-1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

3.0

3.5

4.0

4.5

×102

(c) layer-2

Figure 6. Attention weights over training examples for the input test example from class 9 of F-MNIST (Figure 3b) in the joint training
case. The x-axis is partitioned by class (for each task), and for each class, top-500 datapoints sorted in descending order are shown.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0.0

0.5

1.0

1.5

×107

MNIST FashionMNIST

(a) layer-0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0.00

0.25

0.50

0.75

1.00

×107

(b) layer-1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0.00

0.25

0.50

0.75

1.00

×107

(c) layer-2

Figure 7. Total scores per class for the input test example from class 9 of F-MNIST (Figure 3b) in the joint training case.

keys for the attention computation, the model would be able
to reproduce the good performance on MNIST obtained
after the first part of training, and thus avoid degradation or
more generally catastrophic forgetting (French, 1999). But
there is no such a mask in practice: using an MNIST test
input, we observe strong attention weights on the F-MNIST
part of training patterns, causing severe interference.

In Figures 8 and 9, we present an illustrative example which
shows how an MNIST test image clearly representing the
digit “1” (shown in Figure 12d in Appendix B) is wrongly
recognised as “3” through interference of F-MNIST class
3 (see an example in Figure 12e) which is “dress”. In the
attention maps in Figure 9a, we observe that the MNIST
class 1 training examples are highly activated, so are the
class 3 of F-MNIST. As we move up to layer-1 and layer-2
(Figures 9b and 9c), the attention becomes more distributed
across two tasks, and we finally observe that in layer-2
(Figure 9c), the class 3 of F-MNIST becomes the most
dominant class, which may explain the model’s decision
to output class 3. Otherwise, when the test input is from
F-MNIST, we observe trends similar to the one reported for
the joint training case in Sec. 5.3. Examples for the correctly
classified cases can be found in Appendix B.3.

5.5. Language Modelling

The experiments above focus on image data and feedfor-
ward NNs. Here we conduct experiments with texts using a
recurrent NN (RNN). A desirable NLP experiment would
be to train a big Transformer language model (LM) on a vast
amount of data, and analyse the attention of linear layers
over the training datapoints while sampling from the model.

As we can not afford such a gigantic experiment, we train a
one-layer LSTM LM on two small datasets: a tiny public
domain book, “Aesop’s Fables”, by J. H. Stickney and the
standard WikiText-2 dataset (Merity et al., 2017). The basic
approach is similar to the one we introduced above: we train
LMs as usual, while recording inputs to each linear layer.
Here we focus on the linear layer in the LSTM layer (i.e.,
the single linear transformation which groups all projections
including all transformations for the gates). At test time, we
forward the trained LM on a prompt (short text segment)
and get the test query from the last token from the prompt.
We compute the attention weights for all (token-level) train-
ing datapoints. Since it is difficult to visualise attention
“distribution” over different token positions in the entire
training tokens in a comprehensive manner, we visualise
the text segment around the training datapoints achieving
the highest attention weights (we sum all attention weights
which go to the same training token position).

Table 2 shows an example from the word-level WikiText-
2 experiment. The test query is from a passage in the
Wikipedia page on a warship. We observe that the train-
ing passages achieving the highest attention scores are also
from pages about warships, and they have a similar sentence
structure. A manual inspection shows that the passage with
a similar sentence structure but on an unrelated topic (singer)
is not attended, which indicates that the attention here is
contextual. We refer to Appendix C for more examples,
details, and character-level experiments. While the scale
is limited, we found all examples interesting and intuitive.
They may be capturing the essence of how bigger models
could be “attending” to different parts of training texts based
on some common concept defined by the test query.

The Dual Form of Neural Networks Revisited

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

2

3

4

×102

MNIST FashionMNIST

(a) layer-0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

2.0

2.5

3.0

3.5

4.0
×102

(b) layer-1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

2.0

2.5

3.0

3.5

4.0

×102

(c) layer-2

Figure 8. Plots analogous to Figure 6 for the input test example from class 1 of MNIST (Figure 12d) in the continual learning case.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0.00

0.25

0.50

0.75

1.00

×107

MNIST FashionMNIST

(a) layer-0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0

2

4

6

8

×106

(b) layer-1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0

2

4

6

8

×106

(c) layer-2

Figure 9. Total scores per class for the input test example from class 1 of MNIST (Figure 12d) in the continual training case.

Table 2. Example test query and top-3 training passages (with their Wikipedia page title) from WikiText-2. We also show a manually
found negative example (which is not among the top scoring passages but has a similar sentence structure). The test query token and the
top scoring training token are highlighted in bold. The query is from the test text. We refer to Appendix C for more examples.

Query (Ironclad warship) ... Her principal role was for combat in the English Channel and other European ...

Top-1 (Portuguese ironclad) Her sailing rig also was removed . Her main battery guns were replaced with new ...
Top-2 (SMS Markgraf) ... between the two funnels . Her secondary armament consisted of fourteen 15 cm ...
Top-3 (Italian cruiser Aretusa) single mounts . Her primary offensive weapon was her five 450 mm.

Negative (Nina Simone) ... written especially for the singer . Her first hit song in America was her rendition ...

6. Discussion and Limitations
The dual formulation allows for explicitly visualising atten-
tion weights over all training patterns, given a test input.
While we argue that this view provides a new perspective
on analysing neural networks, it also has several limitations.
First, the memory storage requirement forces us to conduct
experiments with small datasets (see more discussion in
Appendix D). On the other hand, storage requirements grow
linearly with training set size, while computing hardware is
still getting exponentially cheaper with time. That is, soon
we may be able to analyse much larger models trained on
much larger datasets. Second, our analysis is not applica-
ble to models which are already trained. Furthermore, it
is limited to a study of attention weights, in line with tra-
ditional visualisations of attention-based systems, and can
only show which training datapoints are combined. It does
not tell how the combined representations can be converted
to a meaningful output, e.g., in the case of large generative
NNs mentioned in the introduction.

7. Conclusion
We revisit the dual form of the perceptron for linear layers in
deep NNs. The dual form is expressed in terms of the now
popular key/value/attention concepts, which offers novel
insights and interpretability. We visualise and study the
corresponding attention weights. This allows for connecting
training datapoints to test time predictions, and observing
many interesting patterns in various scenarios, on both im-
age and language modalities. While our analysis is still
limited to relatively small datasets, it opens up new avenues
for analysing and interpreting behaviours of deep NNs.

Acknowledgements
This research was partially funded by ERC Advanced grant
742870, project AlgoRNN, and by Swiss National Science
Foundation grant 200021 192356, project NEUSYM. We
are thankful for hardware donations from NVIDIA & IBM.
The resources used here were partially provided by Swiss
National Supercomputing Centre (CSCS) project s1023.

The Dual Form of Neural Networks Revisited

References
Aizerman, M. A., Braverman, E. M., and Rozonoer, L. I.

Theoretical foundations of potential function method in
pattern recognition. Automation and Remote Control, 25
(6):917–936, 1964.

Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z., and Ionescu, C.
Using fast weights to attend to the recent past. In Proc. Ad-
vances in Neural Information Processing Systems (NIPS),
pp. 4331–4339, Barcelona, Spain, December 2016.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. In Int.
Conf. on Learning Representations (ICLR), San Diego,
CA, USA, May 2015.

Balestriero, R., Pesenti, J., and LeCun, Y. Learning in high
dimension always amounts to extrapolation. Preprint
arXiv:2110.09485, 2021.

Bishop, C. M. Pattern Recognition and Machine Learning.
Springer, 2006.

Boser, B. E., Guyon, I., and Vapnik, V. A training algorithm
for optimal margin classifiers. In Proc. Annual ACM
Conference on Computational Learning Theory (COLT),
pp. 144–152, Pittsburgh, PA, USA, July 1992. ACM.

Brown, T. B. et al. Language models are few-shot learn-
ers. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), Virtual only, December 2020.

Burges, C. J. A tutorial on support vector machines for pat-
tern recognition. Data mining and knowledge discovery,
2(2):121–167, 1998.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin,
A., Kaiser, L., et al. Rethinking attention with performers.
In Int. Conf. on Learning Representations (ICLR), Virtual
only, 2021.

Domingos, P. Every model learned by gradient de-
scent is approximately a kernel machine. Preprint
arXiv:2012.00152, 2020.

French, R. M. Catastrophic forgetting in connectionist net-
works. Trends in cognitive sciences, 3(4):128–135, 1999.

Geva, M., Schuster, R., Berant, J., and Levy, O. Trans-
former feed-forward layers are key-value memories. In
Proc. Conf. on Empirical Methods in Natural Language
Processing (EMNLP), pp. 5484–5495, Online and Punta
Cana, Dominican Republic, November 2021.

Graves, A. Supervised sequence labelling with recurrent
neural networks. PhD thesis, Technical University Mu-
nich, 2008.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. Preprint arXiv:1410.5401, 2014.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Irie, K., Zeyer, A., Schlüter, R., and Ney, H. Language
modeling with deep Transformers. In Proc. Interspeech,
pp. 3905–3909, Graz, Austria, September 2019.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are RNNs: Fast autoregressive transformers
with linear attention. In Proc. Int. Conf. on Machine
Learning (ICML), Virtual only, July 2020.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Master’s thesis, Computer Science Depart-
ment, University of Toronto, 2009.

LeCun, Y., Cortes, C., and Burges, C. J. The MNIST
database of handwritten digits. URL http://yann. lecun.
com/exdb/mnist, 1998.

Luong, M.-T., Pham, H., and Manning, C. D. Effective ap-
proaches to attention-based neural machine translation. In
Proc. Conf. on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1412–1421, Lisbon, Portugal,
September 2015.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In Int. Conf. on Learning Rep-
resentations (ICLR), Toulon, France, April 2017.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and phrases
and their compositionality. In Proc. Advances in Neural
Information Processing Systems (NIPS), pp. 3111–3119,
Lake Tahoe, NV, USA, September 2013.

Miller, A. H., Fisch, A., Dodge, J., Karimi, A., Bordes, A.,
and Weston, J. Key-value memory networks for directly
reading documents. In Proc. Conf. on Empirical Methods
in Natural Language Processing (EMNLP), pp. 1400–
1409, Austin, TX, USA, November 2016.

Peng, H., Pappas, N., Yogatama, D., Schwartz, R., Smith,
N. A., and Kong, L. Random feature attention. In Int.
Conf. on Learning Representations (ICLR), Virtual only,
2021.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-to-
image generation. In Proc. Int. Conf. on Machine Learn-
ing (ICML), pp. 8821–8831, Virtual only, July 2021.

Rosenblatt, F. The perceptron: a probabilistic model for
information storage and organization in the brain. Psy-
chological review, 65(6):386, 1958.

The Dual Form of Neural Networks Revisited

Schlag, I., Irie, K., and Schmidhuber, J. Linear Transformers
are secretly fast weight programmers. In Proc. Int. Conf.
on Machine Learning (ICML), Virtual only, July 2021.

Schmidhuber, J. Learning to control fast-weight memories:
An alternative to recurrent nets. Technical Report FKI-
147-91, Institut für Informatik, Technische Universität
München, March 1991.

Schmidhuber, J. Reducing the ratio between learning com-
plexity and number of time varying variables in fully
recurrent nets. In International Conference on Artificial
Neural Networks (ICANN), pp. 460–463, Amsterdam,
Netherlands, September 1993.

Schölkopf, B. and Smola, A. J. Learning with kernels:
support vector machines, regularization, optimization,
and beyond. MIT press, 2002.

Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R. End-
to-end memory networks. In Proc. Advances in Neural
Information Processing Systems (NIPS), pp. 2440–2448,
Montréal, Canada, December 2015.

Sukhbaatar, S., Grave, E., Lample, G., Jegou, H., and Joulin,
A. Augmenting self-attention with persistent memory.
Preprint arXiv:1907.01470, 2019.

Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P., and
Salakhutdinov, R. Transformer dissection: An unified
understanding for transformer’s attention via the lens of
kernel. In Proc. Conf. on Empirical Methods in Natural
Language Processing (EMNLP), pp. 4344–4353, Hong
Kong, China, November 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is all you need. In Proc. Advances in Neural Information
Processing Systems (NIPS), pp. 5998–6008, Long Beach,
CA, USA, December 2017.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a
novel image dataset for benchmarking machine learning
algorithms. Preprint arXiv:1708.07747, 2017.

Zeiler, M. D. and Fergus, R. Visualizing and understanding
convolutional networks. In Proc. European Conf. on
Computer Vision (ECCV), volume 8689, pp. 818–833,
Zurich, Switzerland, September 2014.

The Dual Form of Neural Networks Revisited

A. Top Matching Examples
This section contains figures of images in the training set achieving the highest attention scores (top-3) in each layer in the
single task and multi-task joint training cases. We refer to these examples in the main text in Sec. 5.2 and 5.3. We note that
one example from class 0 (Figure 10a) is often found in the top-3 matches in different settings we study, presumably as the
corresponding image of digit “0” highly overlaps with other images in the original image space.

(a) layer-0, top-1 (b) layer-1, top-1 (c) layer-1, top-2 (d) layer-2, top-1 (e) layer-2, top-2 (f) layer-2, top-3

Figure 10. Top matching training examples for the input test example from class 6 (Figure 3a) in the single task case on MNIST.

(a) layer-0, top-1 (b) layer-1, top-1 (c) layer-1, top-2 (d) layer-2, top-2 (e) layer-2, top-3

Figure 11. Top matching training examples. for the input test example from class 9 of F-MNIST (Figure 3b) in the joint training case.

B. More Examples/Visualisation
Here we provide more examples that do not fit the space limitations of the main text. All input test examples used to generate
figures in the appendix are summarised in Figure 12. We refer to each of them in the subsections below.

(a) MNIST, 3 (b) F-MNIST, 3 (dress) (c) F-MNIST, 5 (sandal) (d) MNIST, 1 (e) F-MNIST, 3 (dress) (f) MNIST, 7

Figure 12. Input test examples used for various scenarios studied in this appendix.

B.1. Single Task Case

Here we simply show one more example in the single task case discussed in Sec. 5.2. The input test example used here is
shown in Figure 12a (digit “3”). The plots of attention weights and the corresponding sums per class are show in Figures 14
and 15. The observations are similar to those discussed in Sec. 5.2. The training examples achieving the highest attention
scores in each layer are shown in Figure 13.

B.2. Joint Training Case

Here we show two more examples for the multi-task joint training case discussed in Sec. 5.3. The input test examples used
here are shown in Figure 12b (class 3 “dress”) and 12c (class 5 “sandal”). Both of them are correctly classified by the model.
The training examples achieving the highest attention scores in each layer are shown in Figures 16 and 19, respectively. The

The Dual Form of Neural Networks Revisited

(a) layer-0 top-1 (b) layer-0 top-2 (c) layer-0 top-3

(d) layer-1 top-1 (e) layer-1 top-2 (f) layer-1 top-3

(g) layer-2 top-1 (h) layer-2 top-2 (i) layer-2 top-3

Figure 13. Top scoring examples for the MNIST input of Figure 12a in the single task case.

plots of the attention weights and the corresponding sums per class are shown in Figures 17 and 18 for the class 3 input, and
in Figures 20 and 21 for the class 5 input. In the first example (F-MNIST, class 3), we do not see MNIST examples among
the top scoring training examples (see Figure 16), unlike in the second case (F-MNIST, class 5) where we do see the digit
“5” of MNIST (see Figure 19). The second example also illustrates the case where the argmax of the sum disagrees with the
model decision (illustrating the limitations of analysis based on attention weights only, see Sec. 6).

B.3. Continual Learning Case

In the continual learning case, we show three examples: one MNIST example (Figure 12d) which is misclassified, and two
others which are correctly classified (one from MNIST is shown in Figure 12f, one from F-MNIST in Figure 12e).

The misclassified example (Figures 8 and 9) has been already discussed in Sec. 5.4.

For the correctly classified inputs, Figures 27 and 28 respectively show the attention weights and the sums for the MNIST
input (Figure 12f) of class 7, and Figures 24 and 25 show them for the F-MNIST input (Figure 12e) of class 3 (“dress”).

The training examples achieving the highest attention scores in each case are shown in Figures 22, 23, and 26.

The Dual Form of Neural Networks Revisited

0 1 2 3 4 5 6 7 8 9
0.4

0.6

0.8

1.0

×103

(a) layer-0
0 1 2 3 4 5 6 7 8 9

4

6

8

×102

(b) layer-1
0 1 2 3 4 5 6 7 8 9

4

6

8

×102

(c) layer-2

Figure 14. Attention weights over training examples for the input test example from class 3 of MNIST (Figure 12a) in the single task case.
x-axis is partitioned by class, and for each class, top-500 datapoints sorted in descending order are shown.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

×107

(a) layer-0
0 1 2 3 4 5 6 7 8 9

0

1

2

×107

(b) layer-1
0 1 2 3 4 5 6 7 8 9

0

1

2

3

×107

(c) layer-2

Figure 15. Total scores per class, for the input test example from class 3 of MNIST (Figure 12a) in the single task case.

C. Language Modelling Experiments
C.1. Basic Settings

Here we describe experimental details of our language modelling experiments introduced in Sec.5.5 and provide more
examples.

We train a one-layer LSTM language model (LM) on two small datasets: a tiny public domain book, “Aesop’s Fables”, by J.
H. Stickney (publicly available under the project Gutenberg9) and the standard WikiText-2 dataset (Merity et al., 2017).

We train a word-level LM on WikiText-2 (about 2 M running words) and a character-level LM on the book (about 185 K
running characters). The word-level model has a vocabulary size of 33 K, and the input word embedding and the LSTM
dimension of 200. For the character-level LM, the vocabulary size is 107, with an input embedding size of 64 and an LSTM
layer of size 1024. For Aesop’s Fables, we isolated the last parts of the book (containing alternative versions of the tales) as
a test set to generate test queries. For WikiText-2, we use the regular train/valid/test splits.

As has been mentioned in Sec.5.5, we focus on analysing the linear layer in the LSTM RNN layer (i.e. the single linear
transformation which groups all projections including all transformations for the gates). The input to this linear layer
consists of one input coming from the previous layer and the LSTM state from the previous time step.

Please find the corresponding analysis for the character-level LM on Aesop’s Fables in Sec. C.2, and for the word-level LM
on WikiText-2 in Sec. C.3. Generally, we found all examples interesting and intuitive.

C.2. Character-Level Experiments on “Aesop’s Fables”

Tables 3, 4 and 5 show the queries we used and the corresponding top scoring training text passages for Aesop’s Fables.

C.3. Word-Level Experiments on WikiText-2

Tables 2, 6 and 7 show the examples for the word-level language model trained on WikiText-2.

9https://www.gutenberg.org/files/49010/49010-0.txt

https://www.gutenberg.org/files/49010/49010-0.txt

The Dual Form of Neural Networks Revisited

(a) layer-0 top-1 (b) layer-0 top-2 (c) layer-0 top-3

(d) layer-1 top-1 (e) layer-1 top-2 (f) layer-1 top-3

(g) layer-2 top-1 (h) layer-2 top-2 (i) layer-2 top-3

Figure 16. Top scoring examples for the F-MNIST input of Figure 12b in the joint training case.

D. Further Discussion on Scalability
We further discuss the scalability of the analysis introduced here for larger models. The main requirement for the analysis
presented here is to store training datapoints during training, whose size linearly increases with the number of training steps.
The complexity of test-time attention weight computation is also linear w.r.t. the number of training steps, and it is just a
one-time computation, which is nothing compared to the resources needed for training the model. The largest GPT3 model
has a state size of 12K and is trained on 300B tokens. The dual form of one self-attention layer would thus require 300G *
12K * 4 = 14PB storage. This is huge, but not infeasible. Alternatively, if the training is reproducible, we could opt for not
storing training datapoints: train the model once, compute test queries, then re-train the model to recompute the training
datapoints to compute test attention weights and store only the statistics relevant for the analysis (e.g., top-k and sum).

The Dual Form of Neural Networks Revisited

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

2

4

6

×102

MNIST
FashionMNIST

(a) layer-0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

2

3

4

5

×102

(b) layer-1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

2

3

4

×102

(c) layer-2

Figure 17. Attention weights over training examples for the input test example from class 3 of F-MNIST (Figure 12b) in the joint training
case. The x-axis is partitioned by class, and for each class, top-500 datapoints sorted in descending order are shown.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0.0

0.5

1.0

×107

MNIST FashionMNIST

(a) layer-0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0.00

0.25

0.50

0.75

1.00

×107

(b) layer-1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0.00

0.25

0.50

0.75

1.00
×107

(c) layer-2

Figure 18. Total scores per class for the input test example from class 3 of F-MNIST (Figure 12b) in the joint training case.

(a) layer-0 top-1 (b) layer-0 top-2 (c) layer-0 top-3

(d) layer-1 top-1 (e) layer-1 top-2 (f) layer-1 top-3

(g) layer-2 top-1 (h) layer-2 top-2 (i) layer-2 top-3

Figure 19. Top scoring examples for the F-MNIST input of Figure 12c in the joint training case.

The Dual Form of Neural Networks Revisited

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

1

2

3

4

×102

MNIST
FashionMNIST

(a) layer-0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

1.5

2.0

×102

(b) layer-1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

1.5

2.0

2.5

×102

(c) layer-2

Figure 20. Attention weights over training examples for the input test example from class 5 of F-MNIST (Figure 12c) in the joint training
case. The x-axis is partitioned by class, and for each class, top-500 datapoints sorted in descending order are shown.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

×106

MNIST FashionMNIST

(a) layer-0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0

2

4

×106

(b) layer-1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0

2

4

6
×106

(c) layer-2

Figure 21. Total scores per class for the input test example from class 5 of F-MNIST (Figure 12c) in the joint training case.

(a) layer-0 top-1 (b) layer-0 top-2 (c) layer-0 top-3

(d) layer-1 top-1 (e) layer-1 top-2 (f) layer-1 top-3

(g) layer-2 top-1 (h) layer-2 top-2 (i) layer-2 top-3

Figure 22. Top scoring examples for the misclassified MNIST input of Figure 12d in the continual training case.

The Dual Form of Neural Networks Revisited

(a) layer-0 top-1 (b) layer-0 top-2 (c) layer-0 top-3

(d) layer-1 top-1 (e) layer-1 top-2 (f) layer-1 top-3

(g) layer-2 top-1 (h) layer-2 top-2 (i) layer-2 top-3

Figure 23. Top scoring examples for the correctly classified F-MNIST input of Figure 12e in the continual training case.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
2

4

6

8

×102

MNIST
FashionMNIST

(a) layer-0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

3

4

5

6

×102

(b) layer-1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

3

4

5

6

×102

(c) layer-2

Figure 24. Attention weights over training examples for the input test example from class 3 of F-MNIST (Figure 12e) in the continual
training case. The x-axis is partitioned by class, and for each class, top-500 datapoints sorted in descending order are shown.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0.0

0.5

1.0

1.5

2.0

×107

MNIST FashionMNIST

(a) layer-0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0.0

0.5

1.0

1.5

×107

(b) layer-1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0.0

0.5

1.0

1.5
×107

(c) layer-2

Figure 25. Total scores per class for the input test example from class 3 of F-MNIST (Figure 12e) in the joint training case.

The Dual Form of Neural Networks Revisited

(a) layer-0 top-1 (b) layer-0 top-2 (c) layer-0 top-3

(d) layer-1 top-1 (e) layer-1 top-2 (f) layer-1 top-3

(g) layer-2 top-1 (h) layer-2 top-2 (i) layer-2 top-3

Figure 26. Top scoring examples for the correctly classified MNIST input of Figure 12f in the continual training case.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

2

3

4

5

×102

MNIST FashionMNIST

(a) layer-0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

2

3

4

×102

(b) layer-1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

2

3

4

×102

(c) layer-2

Figure 27. Attention weights over training examples for the input test example from class 7 of MNIST (Figure 12f) in the continual
training case. The x-axis is partitioned by class, and for each class, top-500 datapoints sorted in descending order are shown.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

×106

MNIST FashionMNIST

(a) layer-0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0

2

4

6

8

×106

(b) layer-1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0

2

4

6

8

×106

(c) layer-2

Figure 28. Total scores per class for the input test example from class 7 of MNIST (Figure 12f) in the continual training case.

The Dual Form of Neural Networks Revisited

Table 3. Example test query and top-3 training passages from Aesop’s Fables. The test query token and the top scoring training token are
highlighted in bold. The query text is taken from the test set. We see training examples with a concept of “doing something fast” getting
high attention scores.

Query ... Wolf was glad to take himself off as fast as his legs would carry him. ...

Top-1 When the Hare awoke, the Tortoise was not in sight; and running as fast
as he could, he found her comfortably dozing at their goal.

Top-2 But the Stork with his long legs easily followed them to the water,
and kept on eating them as fast as he could.

Top-3 The poor Mule made room for him as fast as he could, and the Horse went proudly on his way.

Table 4. Example test query and top-3 training passages from Aesop’s Fables. The test query token and the top scoring training token are
highlighted in bold. The query text is taken from the test set. We see training examples with a phrase of form “a + adjective/single + word
starting with d” getting high attention scores.

Query The Wolf stood high up the stream and the Lamb a little distance below.

Top-1 when the Pigeons had let him come in, they found that
he slew more of them in a single day than the Kite could

Top-2 all the advantages that you mention, yet when I hear the
bark of but a single dog, I faint with terror

Top-3 GREAT Cloud passed rapidly over a country which was
parched by heat, but did not let fall a single drop to refresh it.

Table 5. Example test query and top-3 training passages from Aesop’s Fables. The test query token and the top scoring training token are
highlighted in bold. Here the query is from the training text. We see training examples with a phrase of form “at” plus some timing or
counting related concept getting high attention scores.

Query The Squirrel takes a look at them—he can do no more. At SPACE one time he is called away;
at another, even dragged off in the Lion’s service.

Top-1 ... at seeing an elephant. Is it his great bulk that you so much admire? Mere size is nothing.
At SPACE most it can only frighten little girls and boys

Top-2 At times he would snap at his prey, and at SPACE times play
with him and lick him with his tongue, ...

Top-3 As the Log did not move, they swam round it, keeping a safe distance away,
and at SPACE last one by one hopped upon it.

Table 6. Example test query and top-3 training passages (with their Wikipedia page title) from WikiText-2. The test query token and
the top scoring training token are highlighted in bold. The query is from the test text. We see some training passages about “some
contributions of somebody on something” getting high attention scores.

Query her painting was printed opposite that of Tommy Watson , who was by this time famous ,
(Josepha Petrick Kemarre) particularly for his contribution to the design of a new building for ...

Top-1 (Laurence Olivier) In February 1960 , for his contribution to the film industry ,
Olivier was inducted into the Hollywood Walk of Fame

Top-2 (Khoo Kheng-Hor) he was appointed as honorary Assistant Superintendent of Police by
the Singapore Police Force in recognition for his contribution as consultant

Top-3 (History of AI) Colby did not credit Weizenbaum for his contribution to the program .

The Dual Form of Neural Networks Revisited

Table 7. Example test query and top-3 training passages (with their Wikipedia page title) from WikiText-2. The test query token and the
top scoring training token are highlighted in bold. The query is from the test text. We see training examples about “somebody rating (or
commenting on) something (e.g. movie/song)” getting high attention scores.

Query ... IGN ’s Matt gave ” The ” a score of 9 @.@ 4 out of 10 , describing it as ” a ...
(The Snowmen) in storytelling ” which ” refreshingly ” lacked traditional Christmas references

Top-1 Den of Geek writer named it the ” finest ” stand @-@ alone episode of the second season ,
(Irresistible (film)) describing it as ” a genuinely creepy 45 @-@ minute horror movie ” ...

Top-2 NME felt that it was the ” most impressive ” song on the album , describing it as a
(Moment of Surrender) ” gorgeously sparse prayer built around Adam Clayton ’s bassline and Bono ’s rough ” ...

Top-3 (Species (film)) James from magazine gave the film 2 out of 5 stars , describing it as ” ’ Alien ’ meets ...

