
A Theory of Emergent In-Context Learning as Implicit
Structure Induction

Michael Hahn
Saarland University

mhahn@lst.uni-saarland.de

Navin Goyal
Microsoft Research India

navingo@microsoft.com

Abstract

Scaling large language models (LLMs) leads to an emergent capacity to learn in-context
from example demonstrations. Despite progress, theoretical understanding of this phe-
nomenon remains limited. We argue that in-context learning relies on recombination of com-
positional operations found in natural language data. We derive an information-theoretic
bound showing how in-context learning abilities arise from generic next-token prediction
when the pretraining distribution has sufficient amounts of compositional structure, under
linguistically motivated assumptions. A second bound provides a theoretical justification
for the empirical success of prompting LMs to output intermediate steps towards an answer.
To validate theoretical predictions, we introduce a controlled setup for inducing in-context
learning; unlike previous approaches, it accounts for the compositional nature of language.
Trained transformer LMs can perform in-context learning for a range of tasks, in a manner
consistent with the theoretical results. Mirroring real-world LMs in a miniature setup,
in-context learning emerges when scaling parameters and data, and LMs perform better
when prompted to output intermediate steps. Probing shows that in-context learning is
supported by a representation of the input’s compositional structure. Taken together, these
results provide a step towards theoretical understanding of emergent behavior in large
language models.

Large language models (LLMs), trained only on next-word prediction, can perform novel
tasks by completing a prompt consisting of example demonstrations, without any parameter
updating [Brown et al., 2020]. This ability, termed in-context learning (ICL), is emergent in the
sense that it arises without specialized training data or objectives, simply by scaling models
and computation [Wei et al., 2022a]. This phenomenon has recently been the focus of much
research, but theoretical understanding is limited. Aiming to build theoretical understanding,
recent work has studied in-context learning in miniaturized controlled settings, investigating
how transformers could learn to solve simple classification or regression tasks in context [Xie
et al., 2022, Akyürek et al., 2022, Garg et al., 2022, Chan et al., 2022, von Oswald et al., 2022,
Dai et al., 2022]. However, existing studies do not take into account the highly compositional
nature of language data, modeling the pretraining data either in terms of an unstructured set
of HMMs [Xie et al., 2022], or as consisting of prompts formatted analogously to the test tasks.
Such setups make it hard to account for a lot of the remarkable flexibility that real-world LLMs
show: They can perform broad ranges of in-context tasks with varying prompt formats, and
they can be prompted to provide intermediate steps leading to an answer, often dramatically
improving performance [e.g. Wei et al., 2022b, Nye et al., 2021, Wang et al., 2022, Suzgun et al.,
2022]. The emergence of such behavior remains largely mysterious.

We argue that these abilities can arise through recombination of compositional structure
found in linguistic data, which we formalize in terms of grammar formalisms long studied

1

ar
X

iv
:2

30
3.

07
97

1v
1

 [
cs

.C
L

]
 1

4
M

ar
 2

02
3

in the linguistic literature. We first investigate when an idealized predictor performing next-
token prediction can perform in-context learning from demonstrations. Theorem 1 describes
how broad ICL skills arise when the pretraining distribution contains a sufficient amount
of compositional structure. Based on this result, we introduce a novel controlled scenario
in which in-context learning from demonstrations emerges from next-token prediction. We
define a suite of few-shot test tasks, defined in first-order logic relative to a logical world
model, and evaluate language models (LMs) trained on training datasets with varying amounts
of diverse compositional structure. Unlike training datasets closely mirroring constrained
scenarios proposed in previous work, text generated by compositional processes leads to broad
ICL capabilities. While pretraining cross-entropy decreases continuously, a wide variety of
tasks emerge suddenly after varying amounts of pretraining. Our theory also explains why
prompting LLMs to provide intermediate steps makes ICL more effective (Theorem 2). We
probe the LM’s inner workings and argue that representation learning supports the ICL ability.

Taken together, our key contributions are

1. a theoretical analysis of the conditions under which generic next-token prediction leads to
in-context learning from demonstrations in an idealized predictive model,

2. a controlled setup for studying in-context learning, in which in-context learning skills
emerge for a broad set of tasks, including prompting LMs for providing intermediate
steps.

Theory COMP. LLM
improves with prompt length X X X
gets harder with D[τφ] X X X1

CHAINOFTHOUGHT > Raw X X X2

CHAINOFTHOUGHT > EXPLANATION X X X2

gets harder with |F | X X ?
does not get harder with |Ω| X X ?
recombining skills never seen together n.a. X3 ?
works for natural & unnatural prompts X n.a. X

Table 1: Schematic properties of ICL as predicted by our theory, as exhibited by real transformers
trained on the COMPOSITIONAL data, and observed for real-world LLMs. Evidence for the
first group of properties comes from all settings. A signature prediction of our theory is that
ICL success depends on the complexity D[τφ] of a task’s compositional description. We further
derive a benefit of prompting LMs for intermediate steps before the answer (chain-of-thought
prompting). Properties in the second group are hard to establish for real-world LLMs, but can
be cleanly studied in our controlled setup. The theory predicts scaling with the number of
functions |F | and objects |Ω|; we further experimentally observe recombination of skills never
seen together in finite training data. Robustness to unnatural prompt formats (third group) is
shared by our theory and real-world LLMs; it does not apply to our miniaturized training data
which has no notion of “naturalness”.

1 A Formal Learnability Bound for Learning from Demonstrations

In order to understand when broad ICL capabilities emerge from generic next-token prediction,
we take the perspective of idealized learners with access to infinite training data and infinite

1Figure 10 provides evidence from InstructGPT.
2 [e.g. Wei et al., 2022b, Lampinen et al., 2022]; Figure 10
3Figure 6

2

capacity to fit the data distribution. We show that very general linguistically-motivated assump-
tions about the generative process underlying the pretraining data are sufficient to guarantee
ICL capabilities for an idealized language model performing ordinary next-token prediction.

1.1 Setup

World Model. Both the pretraining data and the few-shot tasks are generated on the basis
of some finite universe Ω of objects. The pretraining corpus consists of a collection of finite
strings d ∈ Σ∗, referred to as documents; Σ is a finite set serving as the alphabet. A “spellout”
map ω 7→ ω maps objects ω ∈ Ω to their names ω ∈ Σ.

Formalizing compositional document generation. We start by theoretically analyzing when
ICL is possible for a predictor reflecting a linguistically-plausible generative process. Over
the past decades, the linguistics literature has proposed a substantial number of grammar
formalisms intended to describe the compositional structure and distribution of sentences and
text [e.g. Pollard, 1984, Joshi, 1985, Abney, 1996, Stabler, 1996, Steedman, 2001, Kallmeyer, 2010b].
Rather than committing to any individual one of them, we eclectically condense key aspects
into a simple formalism and analyze that one. Our results then transfer to other formalisms in
the literature; see Appendix H. The intuitive scope of our formalism is described in Figure 1A–B:
Text is produced from an inventory of building blocks through composition operations [e.g.
Chomsky, 1957, Goldberg, 2006], and properties and operations can be recombined and applied
to different objects [e.g. Montague, 1973, Marcus, 1998] (instantiated by attributes named x, y in
Figure 1A).

Our formalization of linguistically-plausible compositional generative processes, Composi-
tional Attribute Grammar (CAG), consists of two components: (1) a probabilistic context-free
grammar (PCFG) probabilistically generatomg derivation trees over finite sets of terminals and
nonterminals by applying a finite set of production rules, (2) a yield operation Y recursively
mapping trees to strings. As outlined below, to sample a random string from the CAG, we first
generate a derivation tree from the PCFG and then apply the yield operation on it. We discuss
the relation between this definition and the landscape of grammar formalisms, and how our
theoretical results transfer to those, in Appendix H.

CAGs go beyond PCFGs in (i) conditioning string generation on attributes passed across
subtrees (such as the entities “France” or “95 m2” in Figure 1A), and (ii) allowing operations
other than simple concatenation of strings derived by subtrees (Figure 1A.4, 6). In a derivation
tree, each node is associated with a list of attributes taking values in Ω; its length given by
the arity an ∈N of the node’s nonterminal n. The yield operation Y recursively maps trees to
strings. It takes into account a tree, attributes from Ω, and a source r of randomness (Figure 1B):

Y(τ, 〈x1, . . . , xan〉, r) ∈ Σ∗, (1)

where τ ∈ T (the set of all derivation trees), xi ∈ Ω. For a tree consisting of only a terminal,
(1) is arbitrarily defined. For a tree with children, the yield is defined recursively: The yield
of ψ[τ1, ..., τ`]—i.e., the tree rooted by a production rule ψ with children trees τ1, ..., τ` ∈ T—is
some arbitrary concatenation of yields of children trees, Y(τi, ηj, rj), where each ηj is a tuple of
attributes and rj are independent. Children may appear multiple times with different attributes;
their ordering, multiplicity, and attributes may depend on ψ, r, and the attributes x1, . . . , xan

of the parent (formal definition in Appendix F.1.2). Besides grammatical knowledge that is
typically the focus in linguistic work on grammar formalisms, Y must also incorporate world
knowledge that shapes the sentence distribution: In Figure 1B (top), Y as applied to the node
labeled y=capital(x) is responsible for passing the attribute y satisfying y = capital(x) to a

3

milk,

loop

butter, flour, eggs,butterThe ingredients are

ingredient(x)

Indonesia, particularly Jakarta, its capital,

y=capital(x)

x

x=Indonesia

y

It cost them $2M, roughly ¥14M

y=x * ¥/$

x= $2M

yx

France, and its capital, Paris, are...

y=capital(x)

x

x=France

y

The area was 95m2 (that is, 1,023 ft2),

y=x * ft2/m2

x

x= 95 m2

y

unemployment(x)

Unemployment reached 7.3% in California, 6.8% in New
Mexico, 5.9% in Michigan, 5.6% in Mississippi, [...]

in

loop

Unemployment reached x

1
2

3 4

5
6

A Derivation Trees Strings

y=capital(x)

x

x=Indonesia

yparticularly its capital

Indonesia, particularly Jakarta, its capital, is

France, particularly Paris, its capital, is ...x=France

...

unemployment(x)

Unemployment reached 7.3% in California, 6.8% in New Mexico, 5.9% in
Michigan, 5.6% in Mississippi, [...]

in

loop

Unemployment

x = California: 7.3% in California
x = New Mexico: 6.7% in New Mexico

reached x

B

y=capital(x)x

loop

\n

y

ParisFrance \n BeijingChina \n India
...

India New Delhi

Description Length: 5

Description Length: >7

France Paris \n China Beijing \n India

Input

Candidate Compositional Processes

???

y=biggestCity(x)x

loop

\n

y

India Mumbai

Description Length: 8

u v=capital(u) \n

v

New Delhi

France Paris China Beijing\n \n
France Paris \n
China Beijing \n

France Paris China Beijing\n \n India ???

Expected ResponseC

¥/m2315

y=x * ft2/m2x

loop

s

z

z=y * ¥/$$/ft25

y=x * ft2/m2x

loop

s

z

z=y * ¥/$
$/ft25

y

45 $/m2

Chained Reasoning Chain-of-Thought Prompting

Prompt:

Compositional Explanation

Prompt:

Compositional Explanation

¥/m2126$/ft22 , ¥/m21,386$/ft222

$/ft25¥/m2504$/ft28 , _____

¥/m2315

¥/m2126$/ft22 , ¥/m21,386$/ft222

$/ft25¥/m2504$/ft28 , _____

$/m218

$/m272

$/m2198

D

E

0

1

Rn=o(n)

Rn∝n

Prompt Length

E
rr

o
r

R
a
te

0

1

direct
prompting

Prompt Length

E
rr

o
r

R
a
te

x * ft2/m2
x * ￥/$

Theorem 1 Theorem 2

Figure 1: (A) Natural language text is generated by a compositional process. Following lin-
guistic research, we assume that each document can be described in terms of a compositional
description generated from a formal grammar. We highlight some examples of operations
that are re-used and re-composed across documents and applied to different objects. (B) We
formalize this generative processes in terms of a probabilistic grammar combining operations
into derivation trees paired with a yield operation expressing these into strings. Going beyond
PCFGs, variables can be shared across subtrees (top), and subtrees can be iterated (bottom). (C)
When faced with a prompt, recombining compositional operations found in the training corpus
provides a parsimonious explanation of the input (here, naming countries with their capitals),
allowing an optimal predictor to correctly infer the response. Noncompositional explanations
(bottom) are not parsimonious. Other compositional explanations (such as alternatingly naming
largest cities and capitals, top right) can also explain the input, but are disfavored because they
are less parsimonious. (D) This perspective extends to chained reasoning: the most parsimo-
nious explanation of the prompt is in terms of a generative process combining reasoning steps.
We illustrate this at the example of numerical reasoning (unit conversion), which can be solved
by recombining two functions observed in the training data. In the chain-of-thought version,
the intermediate step is made explicit. (E) Theorem 1 guarantees convergence of errors to zero,
as prompt length increases, when the compositional process can express n-fold repetition (as in
(B) bottom). For a composite task as in (D), Theorem 2 provides individual error bounds for the
two steps in chain-of-thought prompting (D right), providing faster convergence than for direct
prompting (D left).

4

subtree; in Figure 1B (bottom), it is—when applied to the loop node—responsible for repeating
a subtree applied to different US states.

Each document d in the corpus is generated by sampling a tree τ ∈ T whose root non-
terminal is a designated start symbol START, with arity 0, and a random r and setting
d := Y(τ, 〈〉, r) ∈ Σ∗. We write p(d) for the resulting distribution on Σ∗. We refer to the
number of nodes in a derivation tree τ ∈ T as its description length D[τ]. For some constant
ρ > 0, P(τ | START) ≥ exp(−ρ ·D[τ]) (Lemma 5).

Regularity Assumptions. We make general regularity assumptions about the CAG, concep-
tually similar to those made in the HMM model of Xie et al. [2022]: The set of derivation trees is
closed under projection onto variable values, concatenation of yields (as in a standard CFG), and
marginalizing of variables. Documents have finite expected length, and all nonterminals can be
used in generating some documents at probability bounded away from zero. See Appendix F.2
for formal definition. These assumptions ensure that all strings in Σ∗ can be constructed at some
(albeit small) nonzero probability, so that an idealized predictor makes well-defined next-token
predictions on any input.

Iteration Complexity. Key to our learning bound will be the ability of CAGs to generate
repetition of the same operation applied to different objects. Natural language has various such
operations (Figure 1A), including lists (Figure 1A.4) or the gapping construction (Figure 1A.64);
Ross [1970]), the latter highly prominent in linguistic research and thought to elude context-free
syntax [Steedman, 1990]. Not all CAGs will have loop-like operations as in Figure 1A, but
they may have other compositional means of generating structures repeating an operation on
different attributes. We formalize this by associating to each CAG its Iteration Complexity Rn:
For each n ≤ |Ω|, let Rn be the smallest number such that the following holds for all θ ∈ T , and
all pairwise distinct x1, ..., xn ∈ Ω. We consider all trees τ ∈ T (aτ = aθ + 1) such that for all
ξ ∈ Ωaτ , Y(τ, ξ, r) with probability at least pτ > 0 has an infix whose distribution matches

Y(θ, 〈x1, ξ1...aτ 〉, r1)...Y(θ, 〈xN , ξ1...aτ 〉, rn). (2)

There is always at least one such tree (Lemma 6). We define Rn by the requirement that, for at
least one of these τ,

D[τ] ≤ Rn + D[θ] +
1
ρ

log
[

pτ ·
(
|Ω|
n

)]
. (3)

Intuitively, Rn indicates how much more complex repetition is compared to a single occurrence;
the third term accounts for the number of different choices of x1, . . . , xn; it disappears in the
simple case where the yield of τ contains (2) for each sequence x1, . . . , xn at equal probabil-

ities pτ = (|Ω|n)
−1

. A simple way of achieving Rn = 1 uses a production rule ψ mapping
a nonterminal to a single nonterminal, and a corresponding yield Y(ψ[θ], 〈〉, r) of the form
Y(θ, 〈x1〉, r1) . . .Y(θ, 〈xn〉, rn), with the permutation determined by r, as in Figure 1B bottom.5

1.2 Learnability Bound

We now provide in-context learning guarantees for an idealized predictor reflecting the distri-
bution of documents sampled from a CAG. This autoregressive predictive distribution, over

4A linguistically faithful analysis of gapping is slightly more complex than in Figure 1A.6, see more in Ap-
pendix H.3.

5More generally, if the number n of iterations produced by this nonterminal depends on r, with some probability
distribution p(n), then Rn ≤ 1− 1

ρ log ∑∞
k=n p(k) (Appendix, Example 4).

5

strings over the alphabet Σ ∪ {$}, for each n = 1, 2, . . . , is given as:6

M(xn|x1...n−1) =
∑d∈Σ∗ p(d) · #d(x1...n)

∑d∈Σ∗ p(d) · #d(x1...n−1)
(4)

where #d(x1...n) is the number of times x1...n appears in d (with $ serving as beginning and
end of sequence token). For longer strings, M(xn...n+∆|x1...n−1) := ∏n+∆

i=n M(xi|x1...i−1).
Our learning bound is in terms of the description length of defining a function within the

CAG. Formally, we say that a function φ : Ω → Ω∗ is expressed by a derivation tree τφ with
description length D[τφ] if:

Y(τφ, 〈x〉, r) ≡ φ(x), ∀r, ∀x ∈ Ω (5)

For instance, “capital” or unit conversion are expressed by subtrees of description length 2 in
the examples in Figure 1A–B. With these notions in place, we state our first theorem:

Theorem 1 (Single-Step Prompting). Let any CAG be given, satisfying the regularity assumptions,
including the associated trees T , yield map Y , and predictive distribution M, with the associated
quantities Rn. Let φ : Ω → Ωd be a function expressed by a derivation tree τφ ∈ T . Let ξ :=
x1, x2, ..., xn ∈ Ω (n ≤ |Ω|) be a sequence with the xi pairwise distinct, and let s ∈ Σ. For m = 1, . . . , n,
consider the prompt Pm given by

x1φ(x1)sx2φ(x2)s . . . sxm−1φ(xm−1)sxm, (6)

with expected completion φ(xm). Assume that predictions are made as

arg maxω∈Σd M(ωs|Pm), (7)

with ties broken arbitrarily. On average across the choice of the sequence x1, x2, ..., xn (picked uniformly at
random from length-n sequences with pairwise-distinct entries), the summed zero-one loss on completing
P1, ..., Pn, is bounded by

O
(

Rn + D[τφ]
)

(8)

where O(·) absorbs constants depending on the PCFG, s, and the average document length E[|d|], but
not otherwise on |Ω|, φ, or n.

We provide the proof in Appendix F.4.

Remarks. Dependence of (8) on Rn cannot in general be avoided (Appendix F.6). The bound (8)
is information-theoretic in nature, considering the idealized predictor (4). We take up the
empirical behavior of real transformers pretrained on finite data in Section 2.

Equation 8 absorbs constants that depend on the PCFG backbone, but not on |Ω|. Thus,
while the bound might end up vacuous when |Ω| (and thus the maximum prompt length) is
small, it will always become nonvacuous when taking |Ω| to infinity while fixing the PCFG.

Various variants and extensions can be proven with the same approach. We assumed that
the response has a fixed, known length d, because we did not make any assumptions about the
separator. An analogous theorem holds if the length of the response is unknown a priori, but
the separator s does not occur in any φ(x). Even the length of x may be taken as flexible if their
set is prefix-free. The bound is robust to changes in the prompt format, such as adding symbols
between x and φ(x). The function φ can also be taken as stochastic; in this case, a regret bound

6This is defined for all x1...n except when x1...n−1 ∈ Σ+$Σ∗, which can never be followed by any symbol inside a
document.

6

comparing to an oracle predictor that knows the task from the start holds, with an analogous
proof (Appendix F.5). An analogous statement further holds for functions φ with multiple
arguments, though an adapted definition of Rn is then needed; we include such functions in
our experiments (Section 2.3).

Proof Intuition. The intuition of the proof is that an optimal predictive model M implicitly
identifies the generative process τ ∈ T underlying the prompt, in order to predict the next
token (Figure 1C). One possibility is that the prompt was generated in some unstructured
manner as a random concatenation of symbols (Figure 1C bottom); another possibility is that
the recurrence of pairs (x, φ(x)) throughout the string is no coincidence, and that a generative
process generating a prompt-like structure underlies it (Figure 1C center). If M was trained
on an unstructured corpus, there is no reason to prefer the second hypothesis: appearance of
structure is likely to be a coincidence under the corpus-generating process, and there is no
reason to extrapolate it to future tokens. On the other hand, when the pretraining data was
generated by a compositional process (as in Figure 1A), the most parsimonious explanation
of the very peculiar format of the prompt Pn is as structured repetition of a single operation,
leading M to predict φ(xm+1). The key quantities modulating the preference for the second
explanation are D[τφ] and Rn: the smaller these are, the greater the advantage in parsimony
of a structured explanation, and the more strongly M will predict the pattern to continue, i.e.,
predict φ(xm+1) as the next token. A more complex φ, as in Figure 1D (left) may take more
examples, but will nonetheless ultimately be learned: every prediction error provides some
information about the function φ; the number of errors is thus bounded by the complexity of
the structure underlying the prompt.

Role of Iteration Complexity. The key to in-context learning is the parameter Rn, which
measures how complex repetition of an operation is: the slower the growth of Rn with n,
the better the error bound on ICL. If Rn = o(n), the error on Pn must converge to zero as n
increases (Figure 1E). This capacity is unavailable in pure PCFGs, for which Rn ≡ +∞ for n > 1
(Appendix F.7)7, but it arises in mildly context-sensitive languages thought to be appropriate
to natural language syntax; an example is the gapping construction in Figure 1A.6 [Kallmeyer,
2010a]. See Appendix H.3 for more on the linguistic background.

Description Length. In computing description lengths in Figure 1, we assumed that concepts
such as “capital”, “biggest city”, or “USD to RMB” were given by atomic nonterminals in the
generative process; however, some of these operations might themselves be best thought of
as composed (e.g., “USD to RMB” from “multiplication” and “exchange of unit symbols”, or
“biggest city” from “city” and “populations”), accordingly impacting description length. Our
learning bound is stated in terms of the description length within the formal system, remaining
agnostic about the description lengths of any of these specific real-world concepts.

(Un)Natural Prompts and Semantic Priors Theorem 1 is stated for prompts that simply con-
catenate inputs xi and outputs φ(xi), but the statement holds equivalently for other regularly
structured prompts. Real-world LLMs are often prompted with more naturalistic prompts
(“volleyball is a sport \n onions are...”), but can also deal with other prompt for-
mats (“volleyball: sport \n onions: food...”) [Rong, 2021, Min et al., 2022] and
can, at least when they are sufficiently large, even learn unnatural or permuted input-output

7Intuitively, this follows from the fact that the copy language {ww : w ∈ Ω∗} is not context-free.

7

mappings (“volleyball: animal \n onions: sport \n broccoli: sport...”)
[Rong, 2021, Wei et al., 2023]. Indeed, the proof of Theorem 1 provides more or less favorable
bounds for more or less natural prompts: the bound in Equation 8 is derived by bounding the
cross-entropy that M incurs on predicting all tokens in the prompt Pn+1. Higher probability
of natural examples compared to less natural or even unnaturally permuted ones propagates
to increased probability assigned by M to the entire prompt, and thereby faster convergence
of ICL. The theory thus predicts correctly that naturalistic prompts are more successful than
unnatural ones, but simultaneously that sufficiently strong predictive models can ultimately
override semantic priors favoring natural completions [Wei et al., 2023]. The relation of the
error bound (8) to the cross-entropy on the prompt also explains the empirical observation that
prompts assigned higher LLM likelihood tend to lead to better ICL results [Gonen et al., 2022].

1.3 Chain-of-Thought Prompting

Empirical research has observed that ICL for complex tasks benefits when models are prompted
to provide intermediate steps before the answer [e.g. Nye et al., 2021, Wei et al., 2022b, Suzgun
et al., 2022, chain of thought prompting]. We formally study this in the simple context of computing
composed functions φ1 ◦ φ2. Here, chain-of-thought prompting conceptually corresponds to
prompting the model to output both an intermediate step φ1(xn) and the result φ2(φ1(xn))
(Figure 1D). Applying Theorem 1 to either direct prompting or a version with the intermediate
step results in a bound depending on D[τφ1◦φ2]. We now show a better bound for the chain-of-
thought version, where the intermediate step is provided before the answer: the error in each of
the two steps can be bounded individually by the description of only one function. While one
cannot, without further assumptions, expect a bound that holds pointwise for each pair φ1, φ2,
we prove a bound that holds pointwise on the component of interest and on-average on the other
component:

Theorem 2 (Chain-of-Thought Prompting). Let any CAG be given, satisfying the regularity assump-
tions, including the associated trees T , yield map Y , and predictive distribution M, with the associated
quantities Rn. Let φ1 : Ω→ Ω be a function expressed by a derivation tree τφ1 ∈ T . Let φ2 : Ω→ Ω.
Let s ∈ Σ. Consider the prompt

P(1)
n = x1φ1(x1)φ2(φ1(x1))s . . . sxmφ1(xm)φ2(φ1(xm))sxm+1 (9)

with expected completion φ1(xm+1), or

P(2)
m = x1φ2(x1)φ1(φ2(x1))s . . . xmφ2(xm)φ1(φ2(xm))sxm+1φ2(xm+1) (10)

with expected completion φ1(φ2(xm+1)). On average across arbitrary functions φ2 and across pairwise
distinct sequences x1, . . . , xn ∈ Ω, and summed over m = 1, . . . , n, the zero-one-error on each of the
two prompts is bounded by

O(Rn + D[τφ1]) (11)

with constants depending on the PCFG, s, and E[|d|], but not φ1, |Ω|, or n.

We prove this in Appendix G. The proof idea is that in each step, the other function can be
effectively ignored in inferring the compositional process. While we focus on the composition
of two functions, an analogous statement and proof hold for longer composition chains.

In the worst case, the two components could make errors on disjoint sets of inputs, so that
the errors would add up, giving the same asymptotics as without chain-of-thought prompting.
But in the more realistic situation where both errors are high for short prompts and then

8

go to zero once the tasks are identified, the overall error will just be the larger one of the
two component tasks’ errors (Figure 1E right). This indeed is close to what happens in our
experiments (Figure 9).

This theoretical benefit is not available when providing the intermediate step after the
solution, as an explanation rather than a chain-of-thought. In this version, the first step amounts
to solving the composed task in one go, leading to an error bound only in terms of D[τφ1◦φ2].
Indeed, in real-world LLMs, providing intermediate steps before the answer seems to be much
more effective than providing it after the answer [Wei et al., 2022b, Lampinen et al., 2022].

1.4 Comparison to Xie et al. [2022]

We discuss how this theoretical analysis of ICL relates to and differs from the analysis proposed
by Xie et al. [2022]. They model the pretraining data as a mixture of HMMs, and cast ICL as
Bayesian identification of one of these mixture components (an analogous idea is sketched by
Wang et al. [2023]). Each HMM mixture component is thought to describe some type of text, e.g.,
Wikipedia biographies, newspaper articles, or tweets. A prompt (e.g., Albert Einstein was
German \n Mahatma Gandhi was Indian \n Marie Curie was) is then identified as
a concatenation of text samples resembling some of these components (e.g., biographies).
Our analysis likewise can be understood in terms of Bayesian inference, in that M implicitly
identifies a generative process τ underlying the prompt. The most important difference between
our analysis and that of Xie et al. [2022] is that we aim to account for the flexible and open-
ended nature of prompting capabilities in LLMs by leveraging the compositional nature of
natural-language data: Whereas Xie et al. [2022] analyzed the task of recovering one of a fixed
space of HMMs which made up the training corpus, we explain ICL as identifying a task from
an open-ended hypothesis space of tasks compositionally recombining operations found in the
training corpus. Whereas Xie et al. [2022] focused their discussion of ICL on entity-property
associations (e.g., nationalities), our approach makes it possible to study ICL on tasks of varying
complexity and structure within a single framework (Figure 1D), including variants such as
chain-of-thought prompting (Section 1.3).

The theorems in Xie et al. [2022] study general recoverability of HMM mixture components
from a single sample in the presence of repeated low-probability transitions (caused by the
prompt structure), with few assumptions about the HMM. However, the application of these
theorems to explaining ICL of classification tasks (e.g. mapping famous people to their nationali-
ties) relies on an important additional assumption, which closely relates to Iteration Complexity:
HMM transitions happen within each mixture component (e.g., Wikipedia articles about peo-
ple), but not between different mixture components (e.g., articles about people; articles about
cities; tweets). This encodes an implicit modeling assumption that similar text about different
entities (e.g., biographies of different people) tends to appear contiguously in the pretraining
corpus. This assumption is a specific form of the more general idea that the generative process
underlying natural language can produce repetition of the same operation applied to different
entities, formalized by Iteration Complexity Rn. Similar assumptions implicitly underlie other
work aiming to empirically induce ICL in controlled setups by training on prompt-like inputs
[Garg et al., 2022, Chan et al., 2022, Akyürek et al., 2022]. We will experimentally compare such
training data with CAG-based pretraining data.

9

a
b

c
d e

f g
Function f1

a
b

c
d e

f g
Function f2

......

Universe Ω

loop over x do

 for some y such that f1(x)=y

 if f2(y)=x then

 print x

 else

 print y

 print x

 endfor

endfor

ggdfbbeebcddaa

ejgbkxjdfdkajdfhzjdfhv
sjdkghakjdvnxkjbhakdjh

gsgbhndfjbnfjbgkfjbhf...

a, b, c, d, e, ...

Functions f1, f2, f3, f4, ...

World Model

generate
Document Scripts

gfafdabeaeaacbadgaad

FVPrompt Dataset HMM Datasets

f1 f1 f1 f1

x

f

f(x)

g g g f f b b b b e c c

f1f2f1f1f2f1f2f2f1f1f1f2

f f d b e c c c a b b f

gfwfdwbeweawcbwdgwad

f2 f2 f2 f2

Compositional DatasetA B C D

separators

emits

Figure 2: Setup and datasets. (A) We assume a logical modelM consisting of a universe Ω
and a set of functions, visualized here as directed graphs. (B–D) We consider three types of
generative processes for the training dataset used in pretraining. (B) The FVPROMPT dataset
directly encodes the functions in a prompt-based format. (C) The HMM datasets, adapting
GINC [Xie et al., 2022], are generated by HMMs whose state space consists of object-function
pairs. (D) In the COMPOSITIONAL dataset, documents are generated by scripts that have access
to the world model and contain arbitrary but compositionally structured instructions; they
correspond to a very simple CAG.

2 Experiments

2.1 Training Datasets

We have described an information-theoretic analysis characterizing when broad ICL capabilities
become possible for an idealized predictive model reflecting a linguistically motivated string
distribution. We now empirically verify whether the predicted behavior can emerge in trans-
former models pretrained on finite data sampled from a CAG. We define a suite of in-context
learning tasks, and benchmark transformers pretrained on several types of controlled miniature
datasets: some modeled closely on prior work, and one representing a minimal CAG.

World Models. All training datasets are based on a world model M consisting of a finite
universe Ω and a set F of functions f : Ω→ Ω. We focus on functions of arity 1 for simplicity,
and will logically define more complex functions in terms of these. In creating documents, we
make the simple assumption that Ω = Σ and ω = ω.

Function Value Prompts. Our first dataset (FVPROMPT, Figure 2B) has a prompt-based for-
mat: pairs of x and f (x), for functions f ∈ F (fixed within a document), with an intervening
separator randomly chosen (fixed within a document) from Ω. Each prompt includes all x ∈ Ω
in random order. Analogous training datasets have been used in prior work experimentally
inducing ICL in constrained setups [Chan et al., 2022, Garg et al., 2022, Akyürek et al., 2022, Li
et al., 2023].

HMM5 and HMMPERDOC. Our next dataset (HMM5, Figure 2C) closely follows the GINC
dataset proposed by Xie et al. [2022]: the dataset is generated by a mixture of five HMMs;
each HMM state has the form 〈x, f 〉 ∈ Ω × F and emits f (x); the two components evolve
independently according to separate transition matrices. The transition matrices are defined
as in Xie et al. [2022]; we provide these in Appendix J for reference. This dataset has more
diversity than FVPROMPT, but still less than the unbounded state space arising from a PCFG-
based compositional system. We thus considered a variant, HMMPERDOC, where separate
permutation matrices were sampled for each document, and no mixing or averaging was
applied (Appendix J).

By assuming a fixed finite state space, the generative processes underlying HMM5 and
HMMPERDOC cannot express unbounded composition. However, due to the specific factorized

10

design, they incorporate a bias towards repeating the same operation (in this case, sequences
of evaluations fi(x)) on different objects; it can be viewed as a simple instantiation of loop
operations. Indeed, this modeling choice is key to Xie et al. [2022]’s argument for this as a model
of ICL, whereby ICL arises because similar text about different entities (e.g., Wikipedia articles
about different people) tends to appear contiguously in the pretraining corpus.

Compositional Document Scripts. Finally, we define a minimal CAG (COMPOSITIONAL,
Figure 2D), including minimal language features needed for our theoretical analysis: a loop
construct, a construct introducing new attributes standing in functional relationships to existing
attributes—so that functions f ∈ F can be defined, a terminal that outputs the value of an
attribute, and a conditional construct (“if-then-else”). We ablate each component below.

This can be intuitively described as a minimalistic programming language; we’ll refer to
the derivation trees as document scripts and write them as programs (Figure 22). Attributes
correspond to variables in a script. Loops are executed for 10 random objects ω ∈ Ω. The “for
some” statement selects a random satisfying object if more than one exists, and is skipped if none
exist. The syntax tree of a script corresponds to the derivation tree τ, and the stochastic map
from scripts to output strings corresponds to the yield function Y in a CAG (see Appendix I).
Due to the “for all” construct, Rn = 1 for n ≤ 10. In order to sample scripts for document
generation, we defined a PCFG-like distribution over syntactically valid scripts (corresponding
to the PCFG backbone of CAGs), favoring scripts generating documents within our LM’s context
length (64). See Appendix I for details,

We provide examples in Appendix B. Intuitively, this generative process represents agents
that have access to the world model and produce text according to arbitrary but compositionally
structured instructions. Unlike natural language, the documents do not share systematic
generalizations such as vocabulary or grammar, nor do they have function words indicating
structural relations between words. They make up for this lack of structure by containing
increased amounts of repetition within a document. We discuss the relation to and differences
from natural language in Section 3.

Our research questions are:

1. Does ICL appear when training real-world transformers on finite data generated from a
minimal CAG? How do models trained on CAG data compare to models trained on the
other datasets?

2. Are the predictions of Theorems 1–2 borne out, i.e., effect of description length, depen-
dence on |F |, independence from |Ω|, advantage of chain-of-thought prompting?

3. In ICL, can transformers recombine operations never seen together during pretraining?

4. What are the dynamics of emergence?

2.2 Training Setup

Models. We train GPT2-like [Radford et al., 2019] models for next-token prediction using
the HuggingFace transformers library [Wolf et al., 2019]. Varying the numbers of dimensions,
layers, and heads (Table 2), we considered models with 14M (small, 2 layers), 21M (medium, 3
layers), 42M (large, 6 layers), and 85M (XL, 12 layers) parameters. See Appendix C for training
details.

11

d Heads Layers Parameters
Small 64 2 2 14M
Medium 128 2 3 21M
Large 256 8 6 42M
XL 768 12 12 85M

Table 2: Model Sizes. The XL model has the same architecture as GPT2-Small, but a smaller
vocabulary.

e a d c b d f d

Example 1 Example 2

Separator

f1

a d a b d a d f

Function Evaluation

f1 f1

f2f2f2

A Propositional

(f1(x) = z ∧ f2(z) = y)
∨ (f2(y) = z ∧ f1(z) = x)

e b d d f f

Example 1

x
a d d

Example 2

f d
y z x y z x y z

f1

f2

f1

f2

f1

f2

B

e b d c c d f f

Example 1 Example 2

Separator
Prompt

f2∘f1

Composite Relation

f2∘f1 f2∘f1

D

e a d b c d f d

Example 1 Example 2

Separator

Prompt

Binary Classification

c b

Label Label

c

f1 f1f2

C Chain-of-Thought

e a d d f d

Example 1

Prompt

b c b

Example 2

c f

f1 f2 f1 f2 f1 f2

E

example separator input expected answer

Figure 3: Test tasks. (A) The FUNCTIONEVALUATION task prompts the model to apply a function
to a given element. (B) PROPOSITIONAL tasks generalize this by asking the model to find a
(unique) z satisfying a relation ϕ(x, y, z), where x, y are the inputs. (C) BINARY tasks prompt
the model to decide which of two funcional relationships holds between a pair of objects. (D)
The COMPOSITION Task prompts the model to compute the composition of two functions. (E)
In the CHAIN-OF-THOUGHT version, the model is prompted to also produce an intermediate
step. Across (A–E), the models need to identify the task from the prompt without any further
training or instruction. Note that there are no separate types reserved for labels or separators,
and the models have no access to markup indicating the components of the prompt. Similar to
large-scale LMs, the models need to figure out the structures of different prompts on-the-fly.

Worlds. We focus on |Ω| = 30 and |F | = 10, and additionally varied |F | = 5, 10, 20, 30 and
|Ω| = 30, 100, 300. Functions were created randomly; f1 was the identity function. Furthermore,
we designated functions f2, f3 such that no script included both f2 and f3: we did this in order
to test whether models could generalize to contexts simultaneously requiring knowledge of
both functions, which cannot be generated by scripts in the training distribution.

For each worldM = 〈Ω,F〉, we generated 500M tokens of training data, for each of the
four data-generating procedures. In the main setup, we additionally created five more worlds
and trained medium-size models on compositional data to verify robustness to sampling of
the world (Appendix D). Documents were concatenated, separated by a STARTOFSEQUENCE

symbol. Data was fed to the model in portions of 64 tokens, across document boundaries.
Training was performed for up to 20 epochs, or until held-out cross-entropy stopped improving,
which happened earlier for noncompositional datasets.

2.3 Test Tasks

In order to evaluate ICL capabilities, we collected a suite of test tasks that are definable relative
to the worldM = (Ω,F) (Figure 3). Tasks are defined using first-order logic formulas ϕ with
literals of the form f (X) = Y (f ∈ F), with free variables matching the inputs x ∈ Ω (or x, y ∈
Ω) and the expected output z. Given inputs x ∈ Ω (or x, y), the expected output φ(x) (or φ(x, y))
is the z satisfying the formula. All prompts are chosen so that z is uniquely determined for all
included (x, y), including the examples. The simplest task is the FUNCTIONEVALUATION task
(Figure 3A): given x ∈ Ω, compute φ(x) := fi(x)—i.e., the z such that ϕ(x, y, z) ≡ (fi(x) = z)
holds.

12

Prompt Format. We encoded all test tasks into a prompt-based format for evaluating ICL.
Across tasks, examples are separated by a random (but fixed within a prompt) separator s ∈ Ω.
When there are two input variables, each prompt is of the form

x1y1z1sx2y2z2s . . . xkykzksxk+1yk+1 (12)

where each tuple (xi, yi, zi) satisfies the formula ϕ(xi, yi, zi) defining the task. When there is one
input variable, each yi is omitted.

Propositional. Our next set of tasks is defined by first-order formulas without quantifiers (see
Appendix A for list). Besides the function evaluation task, its INVERSE (given x ∈ Ω, output
some z such that f (z) = x) is also definable using one literal. We next constructed more complex
formulas with two input variables x, y. Each formula was in DNF, such that each term had 2
literals. We choose 2 literals because this allows encoding the functional relationships between
the three variables x, y, z. The number of literals in ϕ provides a proxy for the description length
D[τφ] in the minimal CAG (Appendix B.4). For instance, one task (“missing link”, Figure 3B, #2
in Appendix A) assumes that either x = fi(f j(y)) or y = fi(f j(x)); z then is the intermediate
element (either f j(y) or f j(x)); defined by ϕ(x, y, z) ≡ (f j(x) = z ∧ fi(z) = y) ∨ (f j(y) =
z ∧ fi(z) = x).

Composed. We furthermore considered a set of tasks that require reasoning about an un-
observed variable, or, equivalently, require evaluating composed functions in one go (see
Appendix A for list). One example (COMPOSITION, Figure 3C) is defined as ϕ(x, z) ≡ ∃a : a =
fi(x) ∧ z = f j(a); here, z = f j(fi(x)).

Binary Classification. Beyond multi-class classification, LLMs can solve novel classification
and reasoning tasks. To test for the emergence of such abilities, we created tasks that require
discriminating between two types of examples and output a binary label `1, `2 ∈ Ω (fixed within
a prompt). For instance, the RELATIONCLASSIFICATION Task (Figure 3D) asks the model to
decide whether y = fi(x) (z = `1) or y = f j(x) (z = `2), assuming exactly one of these is true.

Experimental Details. All functions fi, f j, ... are varied across prompts, but fixed within a
prompt. We first exclude the designated functions f2, f3, and later evaluate performance on
them separately. We also excluded the identity function f1. Each input x or (x, y) appears at
most once within a prompt. Inputs where the answer is either ambiguous or undefined (e.g., in
the INVERSE task, if z is the image of zero or two elements under fi) were excluded.

We evaluate on prompts with an even number of examples, ranging from 2 to 14; this
exhausts the LM’s context size for some tasks. In the binary classification tasks, the number
of examples was balanced between the classes. In the PROPOSITIONAL or COMPOSED tasks
involving disjunction, all disjuncts were represented equally, up to a difference of at most one
to make up for non-divisibility.

Importantly, there are no separate types reserved for labels or separators, and the model has
no access to markup indicating the components of the prompt: like real-world LLMs, models
are asked to figure out the structures of different prompts on-the-fly.

2.4 Results

Compositional training dataset enables ICL on composed tasks. Figure 4 shows results
across tasks for the four training datasets, as a function of the training steps (# of processed

13

tokens), for the models with 85M parameters. As expected, models trained on HMM5 cannot
solve the ICL tasks, and models trained on FVPROMPT can only solve the function eval-
uation task. Models trained on HMMPERDOC achieve above-chance performance on the
PROPOSITIONAL tasks, though not on the BINARY or COMPOSED tasks. For models trained
on COMPOSITIONAL near-perfect accuracy is achieved on FUNCTIONEVALUATION and other
tasks with few literals, but not on BINARY tasks for which above-chance accuracy is achieved.
BINARY tasks and tasks with many literals are the most difficult.

Focusing on models trained on COMPOSITIONAL, we next investigated how accuracy scales
with various parameters, focusing on the diverse PROPOSITIONAL tasks.

Scaling with prompt length. Theorem 1 provides a bound on the summed errors across
prompt lengths, guaranteeing faster convergence for functions with small description length.
Figure 5A shows that accuracy increases with prompt length. In agreement with the theorem,
longer prompts tend to be necessary for tasks with more literals (i.e., higher description length).

Increasing |F |makes ICL harder, increasing |Ω| does not. Another prediction of Theorem 1
concerns the size of the world model. Recall that Equation 8 depends on the PCFG, Rn, s,
and D[τφ]. As each f ∈ F has its own production (Figure 22), dependence on the PCFG is
less favorable when |F | increases even if D[τφ] stays the same. On the other hand, in our
experimental setup, none of these parameters change with |Ω|. We thus expect that increasing
|F | should make tasks harder, but increasing Ω should not.8 This was borne out when re-fitting
at |F | = 20, 30 (Figure 5B), and at |Ω| = 100, 300 (Figure 5C). Indeed, ICL accuracy improved
on PROPOSITIONAL (no improvement on other tasks, see Figure 25) when increasing |Ω|; most
remarkably, tasks with eight literals are now learnt at almost perfect accuracies at the same
prompt length (see Appendix K for explanation).

Emergence with data and model size. We next evaluated the role of model size (Figure 5E).
Two observations are salient. First, increasing model size leads to smaller gains on tasks with
few literals (accuracy was already high for these tasks), and large gains on tasks with many
literals. Second, Figure 5 show that accuracy follows a pattern of sudden emergence over
the course of pretraining—in particular, in those cases where very high accuracy is ultimately
reached (as when |Ω| = 300, Figure 5B): a period of flat at-chance performance precedes a
sudden increase in accuracy, followed by a mostly flat phase. This stands in contrast with the
evolution of pretraining cross-entropy, which decreases continuously (Figure 5D).

LMs can recombine functions. Next, for each of the PROPOSITIONAL tasks with at least two
different functions, we created a variant where two of the functions involved were replaced by
the two functions that never appeared in a single document script (f2, f3). Solving these tasks
thus requires recombining knowledge acquired from different portions of the training data. We
compare accuracy on these versions with the previous results in Figure 6. The effect on the
accuracies is small, with a significant drop affecting only some tasks with 8 literals.

Explanations help recombine abilities, but Chain-of-thought prompting helps more. To
test our predictions from Section 1.3, we compared two variants of the COMPOSITION task
where the model was prompted to generate not only the answer, but also the unobserved
variable. In the CHAINOFTHOUGHT (CoT) version, the model was prompted to output the

8Equation 8 depends on s. As our experiments randomize s over Ω, the PCFG is decoupled from s, removing this
dependence. See Remark 2 in Appendix F.4.

14

Propositional Composed Binary

HMM5

● ● ● ● ● ● ● ● ● ● ●●●●●●●
●●●●●●

1 10 100 1000 10000

● ●
● ● ● ● ● ● ●

● ●●●●●●●●●●●●●● ● ● ● ● ● ●
● ● ●

●●●●●●●●●●●●●
● ●

● ● ● ● ●
●

●
● ●●●●●●●●●

●●●●

● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●
● ● ● ● ● ● ● ● ● ●

●●●●●●
●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●

● ●
●

● ●
● ● ● ● ● ●

●●●●●
●
●●
●●●●

● ● ● ● ● ● ● ● ● ● ●●●
●
●●●●●●●●●

●
● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●

1 10 100 1000 10000

● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●

1 10 100 1000 10000

● ● ● ●

●
●

● ● ● ● ●●●●●
●
●●●
●●●●

●
●

● ●
●

● ● ● ● ●
●●●●●

●●●●●●
●●● ●

● ● ●
● ● ● ● ● ●●●●●

●●●●●●●●

1 10 100 1000 10000

FVPROMPT

●

●

●
● ● ● ● ● ● ● ●●●●●●●

1 10 100 1000 10000

●
● ● ● ● ● ● ● ●

●
●●●●●

●●
●

●

● ● ● ● ● ●

●
●

●

●

●●

●
●●

●
● ● ● ● ● ● ● ●

● ●
●●●

●●
●

● ● ● ● ● ● ● ● ●
●

●●●●●
●
●

●
●

● ● ●
● ● ●

●
● ●●

●
●
●●●● ● ●

● ●
● ● ●

●

●
●
●

●
●●●●● ● ● ● ● ●

●
● ● ● ●●●●●●●●

●
● ●

● ● ● ●
● ● ●●●●●●●

● ● ●
● ● ● ●

● ● ● ●●
●
●
●●
●

1 10 100 1000 10000

●
● ● ● ● ● ● ● ● ● ●●●●●●●●
● ●

● ● ● ● ●
● ● ●●●

●●●●

1 10 100 1000 10000

●
● ● ● ●

● ● ● ● ● ●●●
●●●●

●
●

● ● ● ● ● ● ●
● ●●●●●●●

●
●

●
●

●
●

● ●
● ● ●●●●●●

●

1 10 100 1000 10000

HMMPERDOC

● ● ● ●
●

●

●

●

●

●

●

●●

●●●●●●

1 10 100 1000 10000

● ●
● ● ●

●

●

● ●
●

●

●
●

●

●
●●

●●

●●●●

● ● ●

●

●

● ●

●

●

●
●●

●

●

●
●●

●
●●

● ●

●

●
●

●
●

●

● ● ●●●●

●●●●●●●

● ● ● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●●●

● ●

● ● ●

●

●

● ●

● ●●●
●●●●

●●
●
●

● ●

● ●

●

● ●

●

●
● ●●

●

●

●
● ●

●
●

● ● ●

●

● ●

● ● ●●●
●●
●●●
●●

●
●

● ●

●

●
● ●

●
●

● ● ●●
●

●●●
●●●●
●

● ●

● ●

● ●

●

●

●

●

●

●

●●
●●●
●
●

●●

●

1 10 100 1000 10000

● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●● ● ● ● ●
● ● ● ● ●

●

●
●

●
●●●●

●●●●●

1 10 100 1000 10000

● ●

●
●

●

●

●

● ●
●

●
●●

●●●●
●

●●●

●
●

●
● ●

● ●

●

● ● ●●●●
●
●

●
●●●●●●

●

●

●

● ●

●

● ●

● ●

●

●

●
●

●

●

●
●●●

●

1 10 100 1000 10000

COMPOSITIONAL

●● ●● ●● ●● ●● ●

●●

●● ●● ●● ●●●●●●●●●●●●●●●●●●

1 10 100 1000 10000

● ● ●
● ●

●

●

● ● ● ●●●●●●●●●●●

● ● ● ●

●

●
●

●●

●
●
●

●●●●●●●●

● ● ●
● ●

●

●

●

● ●

●
●
●
●

●●●
●
●●●●●

● ● ● ●
● ●

●

● ●

●

●●●
●
●

●●●
●
●●

● ● ● ● ●

●

●

● ● ●

●●●●●●●●●●●●●●

● ● ● ●

●

●
●

●

●

●
●●

●●●●●●●●●

● ●

●

●
●

●
●

●
●●●●●●●●●

● ● ● ● ● ●

●

●

●

●

●
●
●
●●●●

●

●

●●●●

● ● ●
● ● ●

●

●

●

●●

●

●●

●●

●

●●●
●●●

● ● ● ● ● ● ●

●

●

●
●●

●

●

●●●●●
●

●
●

●●

1 10 100 1000 10000

● ● ● ● ● ●
● ●

● ● ●

●

●

●

●●●
●●●●●

● ● ● ● ● ● ● ●

●●

●

●

●●●

●

●●●

1 10 100 1000 10000

● ● ●

●

●

●

●
●

● ● ●
●

●
●
●●
●●●●●●

● ● ●
●

●

●

●

●

●
● ●●●

●
●
●

●

●●

●

●

●

●

●

● ● ●
●

●

●

●

●

● ●

●
●
●●
●
●●
●●●●●

●●

1 10 100 1000 10000

Literals: — 1 — 2 — 4 — 6 — 8

0.00

0.50

0.75

0.25

1.00

Evaluation

0.00

0.50

0.75

0.25

1.00

0.00

0.50

0.75

0.25

1.00

0.00

0.50

0.75

0.25

1.00

Pretraining Steps [Millions of Tokens]

A
c
cu

ra
cy

A
c
cu

ra
cy

A
c
cu

ra
cy

A
c
cu

ra
cy

Figure 4: Compositional training data enables emergent in-context learning. For each pre-
training dataset (rows) and each group of test tasks (columns), we show accuracy (y-axis) as
a function of the number of tokens processed in pretraining (x-axis, in millions); one epoch
corresponds to 500M tokens. Models were trained until held-out loss stopped improving but at
most for 20 epochs (1010 tokens). All results at 85M parameters and the longest prompt length
(14 examples). Dotted lines indicate chance accuracy. The HMM5 dataset does not lead to ICL.
The FVPROMPT dataset does not lead to generalization beyond the simple function evaluation
task. With HMMPERDOC and COMPOSITIONAL, above-chance performance on composed
tasks becomes possible. COMPOSITIONAL achieves above-chance accuracy on all task groups.

15

A. By Prompt Length

● ●●●
●

●

●●
●
●●●
●●●●●●●

●●●●●
●●

●

●

●
●
●

●●●●●●
● ●

● ● ●●
●
●
●●●●

●●●

● ●●
●●
●●
●
●●●●

●●● ●
●

●●
●●●●●

●●●

●

●
●

●
●●●

●●●
●
●●●●

● ●
●

●●

●●●●●
●●●

●

● ● ●
●●

●●●●●●●●●
●

●●
●
●
●●

●●●●●

●

●●●●●●●●●●●●●●

● ●●

●

●
●

● ●

●●●●●●●●

●● ●

●

●●●●
●●●

● ●

●

●
● ●

●●●
●●●
●●●

● ●
●
●

●

●●

●

●●●●
●

●
●●●

●● ●●
●●

●

●
●●●

●
●
●●●●

●●● ●
●●

●●● ●●●
●●●
●●●

●

●

●
●

●●●●
●
●●●●●

● ●
●

●
●
●●
●●
●●●

●● ●●●

●

●●●●●●●●●●●●●●●

●● ●

●

●●●
●

●●
●●●●●

●● ●●●

●

●

●
●●

●●●●●
●

●

●● ●
●●
●●●●●●

●

●

●

●
●

●●
●
●●●●●●●●

●●
●

●
●
●
●
●●
●●●●

●

●

●
●●●

●
●●●●●

●

●●
●
●●

●
●
●●●

● ●●

●

●●●●●
●●●●
●●

●●●
●●●

●

●●●●●●●●●●●●●●●●

●● ●
●
●

●
●●
●●●●●●●●

●●

●

●
●
●

●
●●●●●●

● ●●●

●

●●●●●●●

●●
●●●

●

●

●

●
●●●

●●●●●

●●●
●

●

●
●●
●●●●●●●●

●●
●

●

●●●

●

●
●●●
●
●●●

● ●●

●

●
●

●●●
●
●●●

● ●

●
●
●

●

●●●●
●●●

●●
●●●

●

●●●●●●●●●●●●●

●●

●●
●

●●●●●●●
●

●●
●
●

●

●

●●
●●
●●●●●●

● ●●

●
●
●●

●●●●●●●●●●●●

●● ●●●

●

●

●

●●●●●●●●●●

●
●

●
●

●●
●●
●●●
●●●

● ●●●●

●

●●
●
●

●●●

●●● ●●

●

●
●

●●●●●
●●●●

●●● ●

●

●●

●
●
●

●

●●●●●●

●●●●●

●

●●●●●●●●●●●●●

●
●

●

●●
●●●

●●●●

● ●●●

●●

●

●●●●●
●●●

●●●●●

●

●

●
●

●
●●●

●●●●●●

●●●●●●

●

●
●●●●●●●

● ●
●

●

●

●●●
●●●
●●●●●●●●

● ●

●

●●
●
●
●●●●●●

●●●●●

●●

●
●●●

●
●●●●

●● ●● ●

●

●

●

●
●
●
●●●●

●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●

●

●

●●

●
●
●●
●●●●●●●●●

●●●●●●●

●●

●
●●●●

●
●●●●●●

●●●●●
●

●

●●●
●●●●●●●●●●●●●●

●●●●
●
●●

●

●
●●●●●●●●●●●●

● ●

●

●●

●●
●●●●●●●●●●

●●●●●●
●

●
●

●
●●●

●●●●
●
●
●●●●

●●●●●●

●

●
●
●●

●

●●
●●
●
●●●●●●

●●●●●●●

●
●

●●●●

●

●●●●●●●●
●●

2 4 6 8 10 12 14

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

B. By |Ω|

●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●

●

●

●●

●
●
●●
●●●●●●●●●

●●●●●●●

●●

●
●●●●

●
●●●●●●

●●●●●
●

●

●●●
●●●●●●●●●●●●●●

●●●●
●
●●

●

●
●●●●●●●●●●●●

● ●

●

●●

●●
●●●●●●●●●●

●●●●●●
●

●
●

●
●●●

●●●●
●
●
●●●●

●●●●●●

●

●
●
●●

●

●●
●●
●
●●●●●●

●●●●●●●

●
●

●●●●

●

●●●●●●●●
●●

●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●

●

●●

●●
●●●●●●●●

●●●●

●●●●●●●

●
●

●

●●●●●●●●
●●●●●●

●●●●●●

●

●●●●●●●●●●●●●●●

●●●●●●

●

●
●●●●●●●●●●●●●●

●● ●●
●

●

●●●●●●●●●●●●●●●●

●●●●●●●

●

●
●●●●●●●●●●●●●●●

●●●●●●●

●

●
●●

●●●
●●●●●●●
●

●●●
●
●●

●

●
●●

●●
●●●●●●●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●

●●●●●●

●

●

●
●
●●●●●●●●●●●●●●●

●●●●●●

●

●

●●

●●

●
●●
●●●●●●●●●●●

●●● ●●

●

●

●●●●●●●●●●●●●●●●●●

●●●●●

●

●

●
●●●●●●●●●●●●●●●●●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●

●●●●●●●

●

●
●●●●●●●●●●●

●●●●●●

●●●●●●●

●

●
●●●●●●●●●●

●●●●●●

●●●●●●●

●

●
●●●●●●●●●●●●●●●●

30 100 300

1 10 100 1000 1 10 100 1000 1 10 100 1000

C. By | |

●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●

●

●

●●

●
●
●●
●●●●●●●●●

●●●●●●●

●●

●
●●●●

●
●●●●●●

●●●●●
●

●

●●●
●●●●●●●●●●●●●●

●●●●
●
●●

●

●
●●●●●●●●●●●●

● ●

●

●●

●●
●●●●●●●●●●

●●●●●●
●

●
●

●
●●●

●●●●
●
●
●●●●

●●●●●●

●

●
●
●●

●

●●
●●
●
●●●●●●

●●●●●●●

●
●

●●●●

●

●●●●●●●●
●●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●●●
●●●●

●●●
●
●
●●●
●●●

●●●●
●●

●●●●●●●

●

●
●
●

●●

●●●●
●●●●●●●

●●●●●●●

●●
●●●●●●●

●●●●●●●●

●●●●●●●

●
●
●

●

●●●●●●●●●●●●●

●●●●●●●
●

●
●

●

●
●
●●
●●●
●
●
●●●●

●●●●●●●
●

●●

●●●●●●
●
●●
●●●●●

●●●●●●●

●

●
●
●●●

●
●
●●●
●
●●●●●

●●●●●●●●

●
●●

●

●●
●
●
●

●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●
●●

●
●●●●
●●
●●
●●●●●●●

●●●●●●●●

●
●●●●

●
●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●
●●●●
●●●●●●●●●

●●●●●●●●

●●●●

●
●●
●●●●●●●●●●●●

●●●●●
●●●

●●●

●●

●
●●
●●●●
●●●●●●●

●●●●●●●●●●

●●●
●
●
●

●●●●●●●
●●●●

●●●●●
●●●

●●
●●
●
●

●

●

●●●●●●●●●●●

●●●●●●●●

●●●●
●●

●●
●●●●●●●●●●●

10 20 30

1 10 100 1000 1 10 100 1000 1 10 100 1000

D. Pretraining

●
● ●

●

●

●
●

●
● ● ●●●●●●●●

●
●

●

●●

●

●

●
●●

● ● ●●●●●●●●

● ●

●

●

●

●

●●
● ● ● ●●●●●●●●

●
●

●●

●
●

●
●

●
●

●●

●●
●●

●● ●● ●
●●●●●●●●

2.25

2.50

2.75

3.00

1 10 100 1000

C
ro

s
s E

n
tr

o
p
y

#parameters

●

●

●

●

14M

21M

42M

85M

E. By #parameters

●●●●●●
●

●

●●●●●●●●●●

● ●●

●
●

●

●●
●
●●●

●

●●●●
●

●●●●
●●

●
●●●●●●●●

●●●
●●

●

●●●
●●●●●●●

●●●●
●
●
●●

●

●
●●

●

●

●
●

●●

●
●
●

●

● ●
●●

● ●●●●

●
●
●
●
●●
●
●●●●

●●●

● ●●

●
●●●●

●●
●●●

●●●●
●●

●

●●●
●●●●●
●●

●●●●●●
●

●

●●●●●●●●●●●●●●●●●

●●●●●●

●
●●

●●●●
●●
●●●
●●●
●
●

●●●●●
●●

●●
●●

●●
●●●
●●●●●●●●●●

●●●●
●
●

●

●●●
●●●●●

●●●●●●●●●

●●●●●
●●

●
●●

●

●

●●
●●●●●●●●●●●

●●●●●●
●
●●

●●
●●
●

●●
●●
●●
●●●

●●●●●●
●

●
●
●
●●
●●
●
●●●
●●●●●
●

●●●●
●●

●

●●
●●

●●
●●
●●
●●●
●●●●
●

●●●●●●●
●
●
●
●●
●●
●
●●
●●
●●
●

●●●●

●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●
●●

●

●
●●●
●●●●●●●●●
●●●●●

●●●
●●●

●
●

●
●
●
●●●●●
●●●●
●●●●●●●

●●●
●
●

●●

●
●
●●●●

●●●●●●●●●●● ●●●●

●●●●●
●

●●

●

●

●●●●●●●
●●●●●●●●●●●●

●● ●●

●●

●

●●
●●●●●
●●●●●●●●●●●

●●●●●●

●●●
●
●●
●
●
●
●●●
●●●●●●●●●

●●●
●●

●

●●
●●

●●
●●●
●●●●●●●●●●●●●●●●

●●●●●●
●

●●

●

●●●
●●●●●●●●●●

●●●●●

●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●

●

●●●●●●●●●●●●

●●●●●●

●

●

●●

●
●
●●
●●●●●●●●●

●●●●
●●

●

●●●

●
●
●●●
●

●●●●●●●

●●

●
●●●●

●
●●●●●●

●●●●●
●

●

●
●
●
●
●

●●●●●

●●●●●
●

●

●●●
●●●●●●●●●●●●●●

●●● ●●

●

●●
●
●●●●●●●●●●

●●●●
●
●●

●

●
●●●●●●●●●●●●

●●●●
●●●

●

●

●
●●●●●●●●●

● ●

●

●●

●●
●●●●●●●●●●

● ●●●
●
●

●

●

●

●●●●●●
●

●
●

●
●●●
●●●●
●
●
●●●●

● ●●
●●

●
●

●
●●

●● ●

●●●●●●

●

●
●
●●

●

●●
●●
●
●●●●●●

●●●●

●
●

●

●
●
●

●●●●
●●●●

●●●●●●●

●
●

●●●●

●

●●●●●●●●
●●

●●●●●●●

●

●

●

●●●
●●
●
●●

14M 21M 42M 85M

1 10 100 1000 1 10 1001000 1 10 1001000 1 10 1001000

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

Literals: — 1 — 2 — 4 — 6 — 8

Figure 5: Scaling of accuracy on the PROPOSITIONAL tasks. As in Figure 4, the x-axis denotes
the number of tokens processed in pretraining. otherwise stated, prompt length is 14, |Ω| = 30,
|F | = 10, model size 85M parameters.

● ● ● ●

●

●
●

●●

●
●
●

●●●●●●●●

● ● ●
● ●

●

●

●

● ●

●
●
●
●

●●●
●
●●●●●

● ● ● ●
● ●

●

● ●

●

●●●
●
●

●●●
●
●●

● ● ● ● ●

●

●

● ● ●

●●●●●●●●●●●●●●

● ● ● ●

●

●
●

●

●

●
●●

●●●●●●●●●

● ●

●

●
●

●
●

●
●●●●●●●●●

● ● ● ● ● ●

●

●

●

●

●
●
●
●●●●

●

●

●●●●

● ● ●
● ● ●

●

●

●

●●

●

●●

●●

●

●●●
●●●

● ● ● ● ● ● ●

●

●

●
●●

●

●

●●●●●
●

●
●

●●

1 10 100 1000 10000

0.0

0.5

1.0

A
cc

u
ra

cy

● ● ●
● ●

●
●

●

●

●
●

●

●
●●

● ● ● ● ● ●

●

●

●

●

●
●
●

●

●

●●●●
●●

● ● ● ● ● ●

●

●

●
●

●
●

●
●●

●●
●●●●●●

● ● ● ● ●
●

●

●

● ●

●●●●
●●●●●●●●

● ● ●
● ● ● ●

●
●

●

●

●●

●●

●

●

●

●

●●●●

● ● ●

● ●

●

●

● ●

●

●

●

●●
●●

●
●
●●●●●

● ● ● ● ● ●
●

●

●

●●

●

●●
●
●

●

●●
●

●

● ● ● ● ● ●

●

●

●

●●●●
●
●●●
●●●●

● ● ●
● ●

● ●

● ●

●

●●
●
●●

●
●
●
●

●

●

●●●

1 10 100 1000 10000

A B

Pretraining Steps [Millions of Tokens]

Literals: — 1 — 2 — 4 — 6 — 8

Figure 6: Recombination: For PROPOSITIONAL tasks with at least two different functions, we
show results when all function pairs appeared in overlapping sets of document scripts om
pretraining (left), and when two functions appeared in disjoint sets of document scripts (right).

16

RAW EXPLANATION CHAINOFTHOUGHT

● ● ● ● ● ● ● ● ● ● ●● ●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●
●●●

● ● ● ● ● ● ● ●
●

● ●●●●●
●
●●●●
●●

1 10 100 1000 10000

0.0

0.5

1.0

A
cc

u
ra

cy

● ● ● ● ● ● ● ● ● ●● ●●●
●●● ● ● ● ● ● ● ● ● ● ●●●●●

●●●●●●●●●
●●

● ● ● ● ● ● ● ●
● ●

●●
●
●
●

●●
●

●
●●
●
●●●●

● ● ● ● ● ●
● ●

● ● ●

●

●

●

●●●
●●●●●

1 10 100 1000 10000

0.0

0.5

1.0

A
cc

u
ra

cy

● ● ● ● ● ● ● ●
● ● ●● ●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●

●●●●●●●●●

● ● ● ● ● ● ● ● ●
●

●

●

●
●●●●●

●●
●

● ● ● ● ● ● ● ●
●

●

●

●●●●
●●●●●●

1 10 100 1000 10000

● ● ● ● ● ● ● ●

●

●●●
●●
●●
●●

● ● ● ● ● ● ●

●

●

● ●●●●●●●●●●●●●●●●

● ● ● ● ● ●

●

● ●
● ●●●●●●●●●

●●●●●●●●

● ● ● ● ● ●

●

●
● ● ●

●●●●●●●●●●

1 10 100 1000 10000

● ● ● ● ● ● ●

●

● ●
●

●●●●●●

● ● ● ● ● ●

●

●
● ● ●●●●●●●●●●●●●●●●

● ● ● ● ● ●

●
● ● ● ●●●●●●●●●●●●●●●●

● ● ● ● ● ●

●

● ● ● ●●●●●●●●●●●●

1 10 100 1000 10000

● ● ● ● ● ● ● ● ●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●
●●●●●●

● ● ● ● ● ● ● ● ● ● ●
●

●

●●

●

●

●

●

●
●●●●●●●

● ● ● ● ● ● ● ● ● ●

●

●
●

●

●●
●
●

●
●●

1 10 100 1000 10000

Pretraining Steps [Millions of Tokens]

A

B

Parameters: — 14M — 21M — 42M — 84M

Figure 7: Computing the composition of functions is hard, as this involves an unobserved
variable (A), in particular, when it requires recombining functions fi, f j that never appeared
together in training (B). Prompting the model to provide the intermediate step after the answer
(EXPLANATION) or before it (CHAINOFTHOUGHT) facilitates this. CHAINOFTHOUGHT trans-
forms the task into a sequence of two simple tasks, and enables even the smallest model to solve
the task. All results at the longest prompt length (14 examples).

f j ◦ fi fk ◦ f j ◦ fi fl ◦ fk ◦ f j ◦ fi

● ● ● ● ●

●

●

●
●●●●●●●

● ● ● ● ● ● ●

●

●
●

●●●●●●●●●●●●●●

● ● ● ● ● ●

●

● ●
● ●●●●●●●●●

●
●
●●●

● ● ● ●

●

●
●

●
●●●●●●●●

●

1 10 100 1000 10000

0.0

0.5

1.0

● ● ● ● ● ● ●
●

●
●
●
●
●
●●
●

● ● ● ● ● ● ●

●

●
●

●

●
●●
●●●
●
●●
●●●●●●

● ● ● ● ● ●

●

●

●
● ●●●●

●●●●
●●●●●●●

● ● ● ● ● ●

●

●
●
● ●●●

●
●●●●
●

1 10 100 1000 10000

● ● ● ● ● ●
●

●

●●
●

●
●●●●

●

● ● ● ● ● ● ●
●

●

●

●

●
●●
●●●●

●

●
●
●●
●●
●

● ● ● ● ● ●
●

●

●

●
●

●●●
●
●●●●
●●●●●●●

● ● ● ● ●

● ●
●

●●
●●●

●
●●●●●

1 10 100 1000 10000

Pretraining Steps [Millions of Tokens]

A
cc

u
ra

cy

Parameters: — 14M — 21M — 42M — 84M

Figure 8: Chain-of-thought reasoning for compositions of several functions; in the setting where
fi, f j never appeared in the same training document script (B in Figure 7). For fair comparison,
we show results at the largest length (8 examples) that fits into the transformer’s context length
for all tasks.

17

A B

●

●

●
●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●
●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●● ●
●● ●●● ●●● ●●●

14M 21M 42M 85M

5 10 5 10 5 10 5 10
0.00

0.25

0.50

0.75

1.00

PromptLength

A
cc

ur
ac

y

●

●

●
●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●
●

●

●
●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

14M 21M 42M 85M

5 10 5 10 5 10 5 10
0.00

0.25

0.50

0.75

1.00

PromptLength

A
cc

ur
ac

y

— Raw — EXPLANATION — CHAINOFTHOUGHT

Figure 9: Accuracy for function composition task by prompt length and model size, at the end
of pretraining. A and B are as in Figure 7. As predicted by our theory, CHAINOFTHOUGHT

achieves the best results. EXPLANATION only helps for large models (as found for real-world
LLMs by Lampinen et al. [2022]), and does not work as well as CHAINOFTHOUGHT even for
those.

unobserved variable before the answer (Figure 3E). In the EXPLANATION version, the model was
prompted to output the unobserved variable after the answer. In these versions, the models are
prompted to produce two tokens. We generated using greedy decoding, and counted responses
as correct when the correct sequence was produced. Theorem 2 provides an improved bound in
CHAINOFTHOUGHT, but not in EXPLANATION.

Results, by data and model size, are shown in Figure 7A. Providing an explanation leads to
somewhat earlier emergence of the task, but it only benefits large models (in line with empirical
findings for real-world LLMs by Lampinen et al. [2022]). In line with the theoretical prediction,
gains from CHAINOFTHOUGHT are much stronger: it leads to early emergence even in the small
model, not much later than the emergence of the simple function evaluation task (Figure 4).
This difference between producing intermediate reasoning steps before or after the answer
mirrors the behavior of real-world LLMs [Wei et al., 2022b, Lampinen et al., 2022].

We next considered composing f2, f3, which never appeared in the same script used for
the pretraining corpus (Figure 7B). The raw task is now inaccessible even to the largest model.
Both ways of including the intermediate step make the task accessible to the large models;
CoT succeeds even on the smallest model and with short prompts (Figure 9B). This suggests
that prompting the model to include the intermediate step helps it compositionally recombine
abilities that were never used together in pretraining.

CHAINOFTHOUGHT continues to succeed for the composition of three and four functions,
where single-step prompting is too difficult for all models (Figure 8).

Ablating CAG Features. We created variants of the training data with (i) loops, (ii) variable
introduction via “for some”, (iii) conditions (if-then-else) ablated. See Appendix L for details.
We trained medium-size LMs (21M parameters) on each variant (Figure 24). Ablating loops
or variable introduction made ICL impossible; indeed, these are necessary to provide learning
guarantees via Theorem 1 for any nontrivial task. On the other hand, ablating conditions had
no discernible negative impact even on PROPOSITIONAL or BINARY tasks whose definitions
involve disjunction.

Heldout analysis. We additionally trained the 21M parameter LM on a pretraining set where
any document containing a substring that would be a valid prompt (with at least 4 examples)

18

A. Propositional B. Binary C. Compositiion

●
●

●

●

●

●

●
●
●●

●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0 5 10
PromptLength

A
cc

ur
ac

y

●

●

●

●
●

●

●

●

● ●●

●

0.25

0.50

0.75

1.00

0 5 10
PromptLength

A
cc

ur
ac

y

● ●

● ●

●

●

●

●

●

●
●

0.00

0.25

0.50

0.75

1.00

0 5 10
PromptLength

A
cc

ur
ac

y

(A–B) Literals: — 1 — 2 — 4 — 6 — 8
(C) — Raw — EXPLANATION — CHAINOFTHOUGHT

Figure 10: Results from InstructGPT (text-davinci-003) on a family of synthetic string
manipulation tasks: FUNCTIONEVALUATION and PROPOSITIONAL tasks (A), BINARY tasks (B),
FUNCTIONCOMPOSITION (C) with direct prompting, EXPLANATION and CHAINOFTHOUGHT.

for any test task (including chain-of-thought) was removed, affecting < 0.02% of documents.9

We considered not just the sample prompts used for evaluation, but any sequence matching
the specification of any of the tasks. We considered substrings appearing in any place in a
document, not just substrings following the StartOfSequence symbol. Accuracies were highly
correlated between the two versions (Figure 29).

Real-World LLMs. We investigated whether key tenets of our theory apply to a real-world
LLM in the InstructGPT family (text-davinci-003), in a synthetic setup of strings over
a,. . . ,z of length 10, with length-preserving operations from Hupkes et al. [2020] as basic
functions (reverse; shift; swap first and last letter). Almost none of the > 1014 strings are
likely to have appeared in the training data. See Appendix O for details. Results are shown
in Figure 10. For PROPOSITIONAL tasks, accuracy increases with prompt length, with earlier
increases for tasks defined with fewer literals. BINARY tasks are solved successfully, better than
in our other experiments. Finally, the FUNCTIONCOMPOSITION task is difficult; in line with
Theorem 2 and our other experiments, CHAINOFTHOUGHT is more helpful in facilitating it
than EXPLANATION.

2.5 Representation learning supports ICL

Our theoretical analysis in Section 1 argues that ICL relies on identifying the compositional
generative process underlying a prompt. Here, we provide evidence from the LM’s activations
and attention patterns that they indeed induce the compositional structure underlying docu-
ments and prompts. We target the 21M parameters model as it has a small number of heads and
layers and yet is successful on almost all tasks. We first visualize attention patterns in a chain-
of-thought example, focusing on the final tokens for visibility, in Figure 11A (see Appendix,

9Of a sample of 1K excluded documents, 27% FUNCTIONEVALUATION or INVERSE, 71% COMPOSITION, 3% Task
12, 1.5% COMPOSITION with CoT or explanation; 0% other PROPOSITIONAL or BINARY tasks. We believe that most
matches to the composed functions are chance matches, i.e. to functions that are simple and happen to match on
some inputs. Upon closer inspection, 66% of the COMPOSITION examples were cases where z = x, which match
COMPOSITION in the (a priori rare) case where f j(fi(x)) = x, so that the function collapses to the much simpler
identity function.

19

Figure 17 for other tasks). The two heads in the lowest layer attend to the three preceding token
to decreasing degree (1.1), or recent tokens with the same type (1.2), respectively. The two heads
in the second layer attend to diffuse average of recent tokens (2.1) or sharply the immediately
preceding tokens (2.2). In the third layer, one head (3.1) attends to the preceding tokens that
are in structurally corresponding positions to the upcoming token—e.g. the head attends to
previous delimiters at the end of each prompt example. Head (3.2) is similar if a bit more diffuse.
The pattern was more diffuse but analogous when removing the separator, i.e., the model does
not rely on a recurring symbol to induce the structure (Appendix, Figures 15 and 17).

We next analyzed attention patterns across a sample of 300 random documents in the
training corpus. The attention head patterns generalized: heads in the lower layers attended in
the same way as described (Figure 11B). Head (3.1) was best explained as attending to tokens
that were structurally corresponding—those tokens produced by executing the same line in the
document script as the token now being predicted. Head (3.2) was explained best—depending
on random seed—either by the same or by the same shifted by one.

In addition to this correlational study, we next performed an interventional one: we inter-
vened on the top-level attention heads in the trained model by masking out attention logits
to non-structurally-corresponding positions. If the function of the top-layer attention heads
is indeed to attend to structurally corresponding positions, this intervention should improve
performance, by effectively providing oracle access to the document’s structure. Indeed, the
intervention consistently improved cross-entropy on the pretraining task when applied to the
top layer heads, and hurt when applied to other layers (Appendix, Figure 12). Similarly, it
improved accuracy on the chain-of-thought task, in particular for short prompts (Figure 11D).

Towards extracting the learned algorithm. This attention pattern suggests a general algorith-
mic approach: first, the lower layers identify the structure of the document. The third layer
then collects information from all structurally matching positions, and predicts the structurally
required token based on that information. In this algorithm, there are two key tasks: first,
identify the structure underlying the input in the lower layers; second, perform analogical
reasoning to predict the next token in the top layer. Importantly, this algorithm equally works
on simple FUNCTIONEVALUATION and chain-of-thought-prompting: once the structure has
been induced, both tasks amount to predicting fi(x) for the last token x. This helps explain why
chain-of-thought prompting emerges so quickly and works even in the smallest model.

The remaining question is how the lower layers identify and represent document structure.
We hypothesize that the model learns to encode the logical relations holding among the tokens
close by, using information gained from the three heads attending to recent tokens. We can
formalize the logical relations as a set of graphs with the immediately preceding tokens as
vertices ({t− K + 1, ...t}), and edges describing which functional relations hold. Encoding this
in a set of adjacency matrices, we obtain a tensor Mi,j,k (1 ≥ i, j ≥ K, 1 ≥ k ≥ |F|) where Mi,j,k
holds iff f (wt−i) = wt−j. We set the context size to K = 3, and fitted a set of log-linear probes
to decode M from the activations in each layer (Figure 11). M can be decoded with highest
accuracy from the second layer. Probe complexity as assessed using a prequential code [Voita
and Titov, 2020] was ≈ 50% of that for a control task [Hewitt and Liang, 2019] where functions
were randomized (but consistently within a probe), showing that the layer encodes nontrivial
information. Interestingly, probe accuracy undergoes a rapid increase at about ≈ 70M tokens of
training, at a similar time as the emergence of many PROPOSITIONAL tasks.

20

A

28
8
6
1

29
10
11

1
0

21

28
8
6
1

29
10
11

1
0

21

28 8 6 1 291011 1 0 2128 8 6 1 291011 1 0 21

28
8
6
1

29
10
11

1
0

21

● ● ●
●

●
●

● ● ● ● ●●●●●●●●●●●●●●

● ●
●

●

● ● ●

● ●
●

●●●●●●

●●●
●●●●●

●

●
● ●

●
●

● ● ● ● ●●●●●●●●●●●●●●

● ●
●

●

● ●
● ● ● ● ●●●●●●●●●●●●●●

● ● ●

●

● ● ● ● ● ●
●●●●●●●●●●●●●●

●
●

●

●
● ●

● ● ● ●

●●●●●●
●●●●●●●●

Head 1 Head 2

To
p

 L
a

y
e

r
In

te
rm

e
d

ia
te

 L
a

y
e

r
B

o
tto

m
 L

a
y
e

r

1 10 100 1000 1 10 100 1000 10000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Pretraining Steps [Millions of Tokens]

C
o

rr
e

la
tio

n

Attention

Pattern

●

●

●

●

1 for all x
2 for some y such that f1(x)=y
3 if f2(y)=x
4 print x
5 else
6 print y
7 print x
8 endfor
9 endfor

7 7 7 7444 6

Neighbor

Neighbor2

SameSymbol

SameLine

6 76

ggdf eeae

ggdf eeaead

ad

ggdf eeaead

ggdf eeaead
B

●●
● ●●

●
●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

1 10 100 1000 10000

Pretraining Steps [Millions of Tokens]

F
1

Layer

●

●

●

Bottom

Mid

Top

g d f

f1

f1 f2

f1

f1

f2

g d f
g
d
f

 1
1 f

1

g d f
g
d
f
 1

C

●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●

●●

●

●●

●

●●

●

●●
●
●●
●
●●
●
●●
●

●●

●

●●
●
●
●

●●
●
●●
●

●●

●
●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●

●●

●

●●
●
●●●
●●●
●●●●●

●
●●
●
●●
●
●●●●●●●●●
●●●
●●●

2 Examples 4 Examples

6 Examples

1 10 100 1000 1 10 100 1000

1 10 100 1000

0.00

0.25

0.50

0.75

1.00

A
c
c
u

ra
c
y

●

●

Yes

No

Intervention

0.00

0.25

0.50

0.75

1.00

A
c
c
u

ra
c
y

D

Figure 11: (A) Attention Maps: chain-of-thought prompting, 21M parameter model. Columns:
heads; rows: layers, bottom layer is closer to the input. The prompt included 15 examples,
we only show the last 10 tokens for clarity. Within each attention map, the y-axis indexes
queries and the x-axis indexes keys. Orange background indicates the separator. (B) Correlation
between attention scores and four attention pattern predictors across 300 documents. (C) Local
relations among immediately preceding tokens can be summarized into a set of adjacency
matrices with binary entries, one for each function fi. A log-linear probe recovers these matrices
at high F1 from the intermediate layer. (D) Intervening on attention heads in the top layer, so that
they can only attend to structurally-matching positions (without any other change to the trained
model) improves model performance for short prompts (here, the same chain-of-thought task
as in A).

21

3 Discussion and Related Work

Qualitative Properties of ICL. We summarize schematic properties of ICL in Table 1. Proper-
ties in the first group are supported by our theory, real transformers pretrained on a minimal
CAG, and real-world LLMs like GPT-3. Improvement of ICL with longer prompts is arguably
predicted by all theoretical or experimental approaches to understanding ICL. On the other
hand, the advantage for prompting LMs to provide intermediate steps, and effects of task
complexity formalized by description length, are new predictions of our theory. The first one
is by now very well established empirically [e.g. Wei et al., 2022b, Suzgun et al., 2022]; we
found evidence for the second one by prompting InstructGPT on our test tasks (Figure 10). The
second group in Table 1 includes properties of ICL which are easy to manipulate in controlled
setups. The fact that ICL gets harder with increased |F | is intuitive. Invariance to, or even
improvement with, increased |Ω| is consistent with empirical observations about benefits of
increased vocabulary size [Xie et al., 2022] and increased numbers of objects [Chan et al., 2022].
We empirically also found that transformers could recombine their knowledge of functions
fi, f j never seen together during training. While it is likely that emergent behavior in LLMs
involves a substantial amount of recombination of abilities, this has been hard to directly verify
in real-world LLMs.

Theoretical Guarantees for In-Context Learning. We have proven information-theoretic
bounds for in-context learning in an optimal predictor, under linguistically motivated as-
sumptions on the pretraining dataset, stated in terms of a task’s description length in the
compositional structure underlying the pretraining data (Theorem 1). As discussed in Sec-
tion 1.4 this differs from bounds by Xie et al. [2022] in guaranteeing learning in an open-ended
hypothesis space recombining compositional operations found in the pretraining data; we
used this to prove a benefit for prompting models to provide intermediate steps (Theorem 2).
These results highlight the usefulness of considering linguistically motivated compositional
generative processes in analyzing the theoretical foundations of LLMs. Our bounds apply to
an optimal predictor; extending them to finite-capacity models pretrained on finite data (as in
our experiments) is an interesting problem for future research. Our findings on representation
learning suggests ways in which the transformer’s architecture might be helpful.

ICL in Controlled Setups. Our work joins a line of recent work [Akyürek et al., 2022, Garg
et al., 2022, Chan et al., 2022, Xie et al., 2022, Li et al., 2023] studying ICL in controlled miniature
setups. Garg et al. [2022], Akyürek et al. [2022] study the in-context learning abilities of
transformers by directly meta-training on prompts from a candidate function class, finding
that they can be meta-trained to learn, among others, linear functions and decision trees, from
example prompts. Li et al. [2023] provide generalization bounds for such a meta-training
setup. Chan et al. [2022] empirically study a simple image-based multiclass classification
dataset, where the training data also had a prompt-based format but the task was fixed across
pretraining prompts and test trials targeted heldout classes. Conceptually closest to our work,
Xie et al. [2022] cast ICL as recovery of an HMM mixture component (see detailed discussion in
Section 1.4). The key innovation in our study is that we account for compositional recombination
of skills into composed tasks, attributing its emergence to the compositional structure of
linguistic pretraining data. This allows us to induce ICL on tasks of varying complexity, and
account for the benefit of providing intermediate steps.

Another line of work has studied the ability of real-world LLMs to in-context-learn synthetic
or even unnatural tasks resembling natural tasks but with exchanged labels [Rong, 2021, Min
et al., 2022, Wei et al., 2023]. The ability of models both to infer the prompt structure and

22

unnatural input-label mappings, at least when they are sufficiently large [Wei et al., 2023], is
conceptually well compatible with the idea that in-context learning relies on identifying the
compositional structure underlying a prompt.

Emergence and Grokking. In many cases, we observed sudden emergence of abilities when
a certain threshold of training steps had been crossed, while the pretraining loss decreased
continuously. This has commonalities with the grokking phenomenon observed in supervised
learning [Power et al., 2022]. Grokking is thought to relate to the build-up of generalizable
representations [Liu et al., 2022, Chughtai et al., 2023]; in a similar vein, we found that emergence
of many tasks coincided with improvement in structural representations.

Mechanisms of ICL. A recent line of work [Akyürek et al., 2022, von Oswald et al., 2022,
Dai et al., 2022] provides in-principle proofs that transformers can implement optimization
algorithms in context, hypothesizing that this underlies real-world ICL, but leaving open how
generic natural-language text data would give rise to such abilities. In our controlled setup,
ICL relied in part on attention heads attending to structurally related positions earlier in the
sequence, allowing the model to “copy” behavior. This may be related to a hypothesized role
of induction heads [Olsson et al., 2022], heads that copy symbols from past contexts matching a
certain pattern-like description.

Role of Pretraining Data in ICL. Shin et al. [2022] empirically investigate the role of pretrain-
ing corpora for ICL in real-world LLMs. Potentially relevant to our attributes on the role of
recombination of compositional behavior, they found that ICL can result by combining corpora
which individually do not give rise to it. Razeghi et al. [2022] studied numerical reasoning
capabilities in GPT-based LLMs, finding that term frequencies in the pretraining dataset had
a strong impact on ICL performance. Chan et al. [2022] empirically investigated the role of
the training dataset in a simple image classification task where the pretraining data consisted
of prompt-like sequences, finding that data-distributional properties such as a Zipfian distri-
bution over classes were beneficial to ICL of held-out classes. Our setup differs in that we
target an open-ended space of compositionally created test tasks and the benefit of providing
intermediate steps. However, relevant to our findings, they found that varying the assignment
of classes to labels in pretraining improved ICL; this may encourage a model towards flexible
recombination of knowledge.

Algorithmic Information Theory and Minimum Description Length. Theorems 1 and 2
suggest that ICL can work because prompts are compressible into compositional generation
processes. Our theoretical analysis has links to Algorithmic Information Theory [Li and Vitányi,
2008] and the Minimum Description Length (MDL) principle [Rissanen, 2010], and to statistical
estimators based on MDL [Barron and Cover, 1991]. Informally, Theorem 1 is based on the
idea that a predictor trained on compositionally generated data will show an implicit MDL-like
bias. In the case where documents are generated by a Turing-complete generative process,
D[·] corresponds to Kolmogorov Complexity and M corresponds to the universal prior used
in Solomonoff induction ([Solomonoff, 1964]; Definition 4.5.6 in Li and Vitányi [2008]). In
that setting, our theorem is similar to the completeness theorem for Solomonoff induction
(Theorem 5.2.1 in Li and Vitányi [2008]). Turing-complete generative processes might be
linguistically unrealistic as a model of text data; hence, we here explicitly derive ICL guarantees
using a restricted and linguistically motivated class of generative processes. However, there

23

is an intriguing link to proposals conceptualizing intelligence as universal prediction akin to
Solomonoff induction [Hutter, 2004].

Pretraining Data and Natural Language. While our theoretical results are grounded in a
long tradition of research on language, the COMPOSITIONAL pretraining dataset only aims
to provide a minimal CAG, and has key differences from real language. Most prominently,
document scripts repeat a lot of structure within a document, whereas natural language repeats
a lot of structure across documents, which our scripts cannot model (recall that there are no
grammatical or lexical conventions across documents). This limitation is shared with the existing
work aiming to induce ICL in controlled setups [Garg et al., 2022, Chan et al., 2022, Xie et al.,
2022, Akyürek et al., 2022], though our experiments advance by incorporating compositional
recursive structure and multi-step tasks. Importantly, our theoretical analysis in Section 1 is
valid independently of such restrictions, because it holds for a very broad class of linguistically
realistic generative processes, and is (up to constants) robust to extending the CAG, even
extensions adversarial to ICL (Appendix F.6). Designing CAGs incorporating more realistic
features of natural language is an interesting future research direction, and should enable
more detailed miniaturized models of the emergence of ICL. Linguistically richer CAGs could
also pave the way to accounting for the role of instructions, which boost prompt effectiveness
when prepended to demonstrations [Brown et al., 2020]; arguably, they provide additional cues
regarding the generative process.

Neural Networks and Compositionality. The ability of neural networks to generalize com-
positionally has recently been the focus of much research [e.g. Kim and Linzen, 2020]. Our
research pursues a somewhat different direction, by studying how compositional structure in
the pretraining data leads to ICL capabilities in the model. In this sense, there is a relation to
work showing that pretraining on structured data can imbue neural networks with increased
abilities to model language or generalize compositionally [e.g. Papadimitriou and Jurafsky,
2020, Mueller et al., 2022].

Limitations and Future Work. Our theory and experiments focus on ICL for functions apply-
ing to objects from a fixed finite universe. Real-world ICL is also successful on more complex
and open-ended input, such as mapping a sentence to its sentiment, or mapping a text and a
question to an answer. Formalizing this within our framework and deriving appropriate ICL
bounds is an interesting problem for further research. Relatedly, the analysis of chain-of-thought
prompting in Theorem 2 focuses on the composition of a fixed sequence of functions. Real
LLMs may also be able to find an appropriate sequence of reasoning steps that may itself be
dependent on the input, and there will typically be multiple acceptable chains of reasoning
leading to a correct answer. Generalizing Theorem 2 in this respect is an intriguing problem for
future research.

In our theoretical guarantees, the measure of task difficulty is the description length in the
compositional generative process underlying the pretraining data. Quantifying it for naturalistic
real-world tasks could provide a useful measure of ICL task difficulty for real-world LLMs.

4 Conclusion

We have provided an information-theoretic analysis of how generic next-token prediction can
enable a model to learn from demonstrations in context. We show a general error bound for
the in-context learning of functions, under linguistically motivated assumptions about the

24

generative process underlying the pretraining corpus. Using this framework, we further prove
a benefit for prompting models to provide intermediate steps towards an answer. To validate
the theoretical analysis, we introduce a new way of inducing in-context learning in a controlled
miniature setup. In this setup, we found sudden emergence of in-context learning when scaling
parameters and data, recombination of abilities found in different parts of the pretraining data,
and the theoretically predicted benefit of prompting for intermediate steps. Taken together,
these results provide a step towards theoretical understanding of emergent properties in large
language models.

Acknowledgments

M.H. gratefully acknowledges Saarland University’s Department of Language Science and
Technology and Saarland Informatics Campus for compute resources.

References

Steven P. Abney. Stochastic attribute-value grammars. ArXiv, cmp-lg/9610003, 1996.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. CoRR, abs/2211.15661,
2022. doi: 10.48550/arXiv.2211.15661. URL https://doi.org/10.48550/arXiv.2211.
15661.

Andrew R. Barron and Thomas M. Cover. Minimum complexity density estimation. IEEE Trans.
Inf. Theory, 37:1034–1054, 1991.

Damián E. Blasi, Ryan Cotterell, Lawrence Wolf-Sonkin, Sabine Stoll, Balthasar Bickel, and
Marco Baroni. On the distribution of deep clausal embeddings: A large cross-linguistic
study. In Anna Korhonen, David R. Traum, and Lluís Màrquez, editors, Proceedings of the
57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages 3938–3943. Association for Computational
Linguistics, 2019. doi: 10.18653/v1/p19-1384. URL https://doi.org/10.18653/v1/
p19-1384.

Hans Christian Boas and Ivan A. Sag. Sign-Based Construction Grammar. 2012.

Pierre Boullier. Chinese numbers, mix, scrambling, and range concatenation grammars. In
Conference of the European Chapter of the Association for Computational Linguistics, 1999.

Pierre Boullier. Range concatenation grammars. In International Workshop/Conference on Parsing
Technologies, 2000.

Joan Bresnan. Lexical Functional Syntax. 2000.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-
shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina

25

https://doi.org/10.48550/arXiv.2211.15661
https://doi.org/10.48550/arXiv.2211.15661
https://doi.org/10.18653/v1/p19-1384
https://doi.org/10.18653/v1/p19-1384

Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Stephanie C. Y. Chan, Adam Santoro, Andrew K. Lampinen, Jane X. Wang, Aaditya Singh,
Pierre H. Richemond, Jay McClelland, and Felix Hill. Data distributional properties drive
emergent in-context learning in transformers. CoRR, abs/2205.05055, 2022. doi: 10.48550/
arXiv.2205.05055. URL https://doi.org/10.48550/arXiv.2205.05055.

Zhiyi Chi. Statistical properties of probabilistic context-free grammars. Comput. Linguistics, 25:
131–160, 1999.

Noam Chomsky. Syntactic structures. Mouton, The Hague, 1957.

Noam Chomsky. The minimalist program. 1992.

Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse
engineering how networks learn group operations. CoRR, abs/2302.03025, 2023. doi: 10.
48550/arXiv.2302.03025. URL https://doi.org/10.48550/arXiv.2302.03025.

Alexander Clark. Strong learning of some probabilistic multiple context-free grammars. In
Mathematics of Language, 2021.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Why can GPT
learn in-context? language models secretly perform gradient descent as meta-optimizers.
CoRR, abs/2212.10559, 2022. doi: 10.48550/arXiv.2212.10559. URL https://doi.org/10.
48550/arXiv.2212.10559.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers
learn in-context? A case study of simple function classes. CoRR, abs/2208.01066, 2022. doi:
10.48550/arXiv.2208.01066. URL https://doi.org/10.48550/arXiv.2208.01066.

Jonathan Ginzburg. The interactive stance : meaning for conversation. 2012.

Jonathan Ginzburg and Ivan A. Sag. Interrogative Investigations: The Form, Meaning, and Use of
English Interrogatives. 2001.

Adele E. Goldberg. Constructions at work: The nature of generalization in language. 2006.

Hila Gonen, Srini Iyer, Terra Blevins, Noah A. Smith, and Luke Zettlemoyer. Demystifying
prompts in language models via perplexity estimation. ArXiv, abs/2212.04037, 2022.

John Hale. Uncertainty about the rest of the sentence. Cognitive science, 30 4:643–72, 2006.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. ArXiv,
abs/1909.03368, 2019.

Tim Hunter and Chris Dyer. Distributions on minimalist grammar derivations. In Mathematics
of Language, 2013.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
How do neural networks generalise? J. Artif. Intell. Res., 67:757–795, 2020. doi: 10.1613/jair.1.
11674. URL https://doi.org/10.1613/jair.1.11674.

26

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2205.05055
https://doi.org/10.48550/arXiv.2302.03025
https://doi.org/10.48550/arXiv.2212.10559
https://doi.org/10.48550/arXiv.2212.10559
https://doi.org/10.48550/arXiv.2208.01066
https://doi.org/10.1613/jair.1.11674

Marcus Hutter. Universal artificial intelligence. In Texts in Theoretical Computer Science. An
EATCS Series, 2004.

Gerhard Jäger and James Rogers. Formal language theory: refining the chomsky hierarchy.
Philosophical Transactions of the Royal Society B: Biological Sciences, 367:1956 – 1970, 2012.

Aravind K. Joshi. Natural language parsing: Tree adjoining grammars: How much context-
sensitivity is required to provide reasonable structural descriptions? 1985.

Laura Kallmeyer. On mildly context-sensitive non-linear rewriting. Research on Language and
Computation, 8:341–363, 2010a.

Laura Kallmeyer. Parsing beyond context-free grammars. In Cognitive Technologies, 2010b.

Laura Kallmeyer and Maribel Romero. Ltag semantics with semantic unification. In Tag, 2004.

Hans Kamp and Uwe Reyle. From discourse to logic - introduction to modeltheoretic semantics
of natural language, formal logic and discourse representation theory. In Studies in Linguistics
and Philosophy, 1993.

Fred Karlsson. Constraints on multiple center-embedding of clauses. Journal of Linguistics,
pages 365–392, 2007.

Jong-Bok Kim and Peter Sells. English Syntax: An Introduction. 2008.

Najoung Kim and Tal Linzen. Cogs: A compositional generalization challenge based on
semantic interpretation. ArXiv, abs/2010.05465, 2020.

Yoon Kim, Chris Dyer, and Alexander M. Rush. Compound probabilistic context-free grammars
for grammar induction. In Anna Korhonen, David R. Traum, and Lluís Màrquez, editors,
Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 2369–2385. Association for
Computational Linguistics, 2019. doi: 10.18653/v1/p19-1228. URL https://doi.org/10.
18653/v1/p19-1228.

Gregory M Kobele. Features moving madly: A formal perspective on feature percolation in the
minimalist program. Research on Language and Computation, 3(2-3):391–410, 2005.

Andrew K. Lampinen, Ishita Dasgupta, Stephanie C. Y. Chan, Kory W. Mathewson, Mh Tessler,
Antonia Creswell, James L. McClelland, Jane Wang, and Felix Hill. Can language models
learn from explanations in context? In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang,
editors, Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7-11, 2022, pages 537–563. Association for Computational
Linguistics, 2022. URL https://aclanthology.org/2022.findings-emnlp.38.

Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and its Applications. 3 edition,
2008.

Yingcong Li, M. Emrullah Ildiz, Dimitris S. Papailiopoulos, and Samet Oymak. Trans-
formers as algorithms: Generalization and implicit model selection in in-context learning.
CoRR, abs/2301.07067, 2023. doi: 10.48550/arXiv.2301.07067. URL https://doi.org/10.
48550/arXiv.2301.07067.

27

https://doi.org/10.18653/v1/p19-1228
https://doi.org/10.18653/v1/p19-1228
https://aclanthology.org/2022.findings-emnlp.38
https://doi.org/10.48550/arXiv.2301.07067
https://doi.org/10.48550/arXiv.2301.07067

Ziming Liu, Ouail Kitouni, Niklas Stefan Nolte, Eric J. Michaud, Max Tegmark, and Mike
Williams. Towards understanding grokking: An effective theory of representation learning.
ArXiv, abs/2205.10343, 2022.

Christopher D. Manning and Hinrich Schütze. Foundations of statistical natural language
processing. 1999.

Gary F. Marcus. Rethinking eliminative connectionism. Cognitive Psychology, 37:243–282, 1998.

Jens Michaelis. Derivational minimalism is mildly context-sensitive. In Michael Moortgat, editor,
Logical Aspects of Computational Linguistics, Third International Conference, LACL’98, Grenoble,
France, December 14-16, 1998, Selected Papers, volume 2014 of Lecture Notes in Computer Science,
pages 179–198. Springer, 1998. doi: 10.1007/3-540-45738-0_11. URL https://doi.org/
10.1007/3-540-45738-0_11.

Jens Michaelis. Transforming linear context-free rewriting systems into minimalist grammars. In
Philippe de Groote, Glyn Morrill, and Christian Retoré, editors, Logical Aspects of Computational
Linguistics, 4th International Conference, LACL 2001, Le Croisic, France, June 27-29, 2001, Proceed-
ings, volume 2099 of Lecture Notes in Computer Science, pages 228–244. Springer, 2001. doi:
10.1007/3-540-48199-0_14. URL https://doi.org/10.1007/3-540-48199-0_14.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning
work? CoRR, abs/2202.12837, 2022. URL https://arxiv.org/abs/2202.12837.

Richard Montague. The proper treatment of quantification in ordinary English. In Approaches to
natural language, pages 221–242. Springer, 1973.

Aaron Mueller, Robert Frank, Tal Linzen, Luheng Wang, and Sebastian Schuster. Coloring
the blank slate: Pre-training imparts a hierarchical inductive bias to sequence-to-sequence
models. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Findings
of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, May 22-27, 2022,
pages 1352–1368. Association for Computational Linguistics, 2022. doi: 10.18653/v1/2022.
findings-acl.106. URL https://doi.org/10.18653/v1/2022.findings-acl.106.

Stefan Müller. Grammatical theory: From transformational grammar to constraint-based
approaches. Language Science Press, 2020. URL https://library.oapen.org/handle/
20.500.12657/46939.

Maxwell I. Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton,
and Augustus Odena. Show your work: Scratchpads for intermediate computation with
language models. CoRR, abs/2112.00114, 2021. URL https://arxiv.org/abs/2112.
00114.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, T. J. Henighan,
Benjamin Mann, Amanda Askell, Yushi Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, John Kernion,
Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom B. Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Christopher Olah. In-context learning and induction heads. ArXiv,
abs/2209.11895, 2022.

28

https://doi.org/10.1007/3-540-45738-0_11
https://doi.org/10.1007/3-540-45738-0_11
https://doi.org/10.1007/3-540-48199-0_14
https://arxiv.org/abs/2202.12837
https://doi.org/10.18653/v1/2022.findings-acl.106
https://library.oapen.org/handle/20.500.12657/46939
https://library.oapen.org/handle/20.500.12657/46939
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114

Isabel Papadimitriou and Dan Jurafsky. Learning music helps you read: Using transfer to study
linguistic structure in language models. In Bonnie Webber, Trevor Cohn, Yulan He, and
Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2020, Online, November 16-20, 2020, pages 6829–6839. Association for
Computational Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.554. URL https:
//doi.org/10.18653/v1/2020.emnlp-main.554.

Carl Pollard. Generalized phrase structure grammars, head grammars, and natural language,
1984.

Carl Pollard and Ivan A Sag. Head-driven phrase structure grammar. University of Chicago Press,
1994.

Eva Portelance, Leon Bergen, Chris Bruno, and Timothy J. O’Donnell. Mildly context sensitive
grammar induction and variational bayesian inference. CoRR, abs/1710.11350, 2017. URL
http://arxiv.org/abs/1710.11350.

Alethea Power, Yuri Burda, Harrison Edwards, Igor Babuschkin, and Vedant Misra. Grokking:
Generalization beyond overfitting on small algorithmic datasets. ArXiv, abs/2201.02177,
2022.

A. Radford, Jeffrey Wu, R. Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. OpenAI, 2019.

Yasaman Razeghi, Robert L. Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining
term frequencies on few-shot numerical reasoning. In Yoav Goldberg, Zornitsa Kozareva,
and Yue Zhang, editors, Findings of the Association for Computational Linguistics: EMNLP 2022,
Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages 840–854. Association for Compu-
tational Linguistics, 2022. URL https://aclanthology.org/2022.findings-emnlp.
59.

Jorma Rissanen. Minimum description length principle. In Encyclopedia of Machine Learning,
2010.

Frieda Rong. Extrapolating to unnatural language processing with gpt-3’s in-context
learning: The good, the bad, and the mysterious. https://ai.stanford.edu/
blog/in-context-learning/#:~:text=Extrapolating%20to%20Unnatural%
20Language%20Processing%20with%20GPT-3%27s%20In-context,GPT-3%27s%
20ability%20to%20extrapolate%20to%20less%20natural%20inputs, 2021.

John Robert Ross. Gapping and the order of constituents. 1970.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On multiple context-free
grammars. Theor. Comput. Sci., 88:191–229, 1991.

Stuart M. Shieber. Evidence against the context-freeness of natural language. Linguistics and
Philosophy, 8:333–343, 1985.

Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong Kim, HyoungSeok Kim, Boseop Kim,
Kyunghyun Cho, Gichang Lee, Woo-Myoung Park, Jung-Woo Ha, and Nako Sung. On the
effect of pretraining corpora on in-context learning by a large-scale language model. In
Marine Carpuat, Marie-Catherine de Marneffe, and Iván Vladimir Meza Ruíz, editors, Pro-
ceedings of the 2022 Conference of the North American Chapter of the Association for Computational

29

https://doi.org/10.18653/v1/2020.emnlp-main.554
https://doi.org/10.18653/v1/2020.emnlp-main.554
http://arxiv.org/abs/1710.11350
https://aclanthology.org/2022.findings-emnlp.59
https://aclanthology.org/2022.findings-emnlp.59
https://ai.stanford.edu/blog/in-context-learning/#:~:text=Extrapolating%20to%20Unnatural%20Language%20Processing%20with%20GPT-3%27s%20In-context,GPT-3%27s%20ability%20to%20extrapolate%20to%20less%20natural%20inputs
https://ai.stanford.edu/blog/in-context-learning/#:~:text=Extrapolating%20to%20Unnatural%20Language%20Processing%20with%20GPT-3%27s%20In-context,GPT-3%27s%20ability%20to%20extrapolate%20to%20less%20natural%20inputs
https://ai.stanford.edu/blog/in-context-learning/#:~:text=Extrapolating%20to%20Unnatural%20Language%20Processing%20with%20GPT-3%27s%20In-context,GPT-3%27s%20ability%20to%20extrapolate%20to%20less%20natural%20inputs
https://ai.stanford.edu/blog/in-context-learning/#:~:text=Extrapolating%20to%20Unnatural%20Language%20Processing%20with%20GPT-3%27s%20In-context,GPT-3%27s%20ability%20to%20extrapolate%20to%20less%20natural%20inputs

Linguistics: Human Language Technologies, NAACL 2022, Seattle, WA, United States, July 10-15,
2022, pages 5168–5186. Association for Computational Linguistics, 2022. doi: 10.18653/v1/
2022.naacl-main.380. URL https://doi.org/10.18653/v1/2022.naacl-main.380.

Ray J. Solomonoff. A formal theory of inductive inference, part ii. Information and Control, 7(2):
224–254, 1964.

E. Stabler. Derivational minimalism. In Logical Aspects of Computational Linguistics, 1996.

Mark Steedman. Gapping as constituent coordination. Linguistics and Philosophy, 13:207–263,
1990.

Mark Steedman. The syntactic process. 2001.

Mirac Suzgun, Nathan Scales, Nathanael Scharli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V. Le, Ed Huai hsin Chi, Denny Zhou, and Jason
Wei. Challenging big-bench tasks and whether chain-of-thought can solve them. ArXiv,
abs/2210.09261, 2022.

John Torr, Milos Stanojević, Mark Steedman, and Shay B. Cohen. Wide-coverage neural a*
parsing for minimalist grammars. In Annual Meeting of the Association for Computational
Linguistics, 2019.

K. Vijay-Shanker and David J. Weir. The equivalence of four extensions of context-free grammars.
Mathematical systems theory, 27:511–546, 1994.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi. Characterizing structural descriptions
produced by various grammatical formalisms. In Annual Meeting of the Association for Compu-
tational Linguistics, 1987.

Elena Voita and Ivan Titov. Information-theoretic probing with minimum description length.
In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November
16-20, 2020, pages 183–196. Association for Computational Linguistics, 2020. doi: 10.18653/
v1/2020.emnlp-main.14. URL https://doi.org/10.18653/v1/2020.emnlp-main.
14.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. 2022.

Boshi Wang, Xiang Deng, and Huan Sun. Iteratively prompt pre-trained language models for
chain of thought. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 2714–2730, Abu Dhabi, United Arab Emirates, December 2022. Association
for Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.
174.

Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large language models are implicitly
topic models: Explaining and finding good demonstrations for in-context learning. ArXiv,
arXiv:2301.11916, 2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language

30

https://doi.org/10.18653/v1/2022.naacl-main.380
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://aclanthology.org/2022.emnlp-main.174
https://aclanthology.org/2022.emnlp-main.174

●●

●●●● ●●

●●●● ●●

●●
●●

●

●

● ●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●●

●●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●●

2.5

3.0

1 10 100 1000 10000

Data

Head 1

Head 2

Layer

●

●

●

Bottom

Mid

Top

Head

D
e

v
 C

ro
s
s
 E

n
tr

o
p

y

Figure 12: Intervening on attention heads by masking out non-structurally-corresponding
positions reduces cross-entropy compared to trained model (black) when applied to top layer
(blue), and increases it when applied to lower layers (red, green). Here, we simply intervene
on the trained model, without any additional training. A benefit begins early in training, and
persists.

models. CoRR, abs/2206.07682, 2022a. doi: 10.48550/arXiv.2206.07682. URL https://doi.
org/10.48550/arXiv.2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. CoRR,
abs/2201.11903, 2022b. URL https://arxiv.org/abs/2201.11903.

Jerry W. Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
Liu, Da Huang, Denny Zhou, and Tengyu Ma. Larger language models do in-context learning
differently. 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s
transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771, 2019. URL
http://arxiv.org/abs/1910.03771.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-
context learning as implicit bayesian inference. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
URL https://openreview.net/forum?id=RdJVFCHjUMI.

Songlin Yang, R. Levy, and Yoon Kim. Unsupervised discontinuous constituency parsing with
mildly context-sensitive grammars. ArXiv, abs/2212.09140, 2022.

Yanpeng Zhao and Ivan Titov. Visually grounded compound pcfgs. In Bonnie Webber, Trevor
Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 4369–4379.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.354.
URL https://doi.org/10.18653/v1/2020.emnlp-main.354.

Contents

1 A Formal Learnability Bound for Learning from Demonstrations 2
1.1 Setup . 3
1.2 Learnability Bound . 5
1.3 Chain-of-Thought Prompting . 8
1.4 Comparison to Xie et al. [2022] . 9

31

https://doi.org/10.48550/arXiv.2206.07682
https://doi.org/10.48550/arXiv.2206.07682
https://arxiv.org/abs/2201.11903
http://arxiv.org/abs/1910.03771
https://openreview.net/forum?id=RdJVFCHjUMI
https://doi.org/10.18653/v1/2020.emnlp-main.354

Accuracy 0.0 0.0 0.0 0.0 0.0 0.0 0.86 0.95 0.98 0.98

Data 4M 8M 16M 32M 64M 128M 256M 500M 1000M 7500M

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

Figure 13: Attention Maps: chain-of-thought prompting, 21M parameter model, for the two
attention heads in the top layer, by the amount of pretraining measured in tokens. The rightmost
facet corresponds to Figure 11A. A periodic attention pattern becomes visible at around 64M
training tokens, preceding the rapid emergence of high accuracy between 128M and 256M
tokens.

2 Experiments 10
2.1 Training Datasets . 10
2.2 Training Setup . 11
2.3 Test Tasks . 12
2.4 Results . 13
2.5 Representation learning supports ICL . 19

3 Discussion and Related Work 22

4 Conclusion 24

A Task Definitions 35

B Example Documents 36
B.1 Example 1 . 36
B.2 Example 2 . 37
B.3 Example 3 . 37
B.4 Example 4: Representability of Test Tasks . 38

C Training Details 40

D Stability to World 40

E Attention Maps 41

F Proof of Theorem 1 41
F.1 Formal Definition of Compositional Attribute Grammars 41

F.1.1 A Standard PCFG Generating Derivation Trees 41
F.1.2 A yield operation mapping derivations to strings 42

F.2 Regularity Assumptions . 45
F.3 Preparatory Lemmas . 46
F.4 Proof of Theorem 1 . 47

32

%%122510 1 4 0 0 1 3 4 15 1 9 3 2 1 221820 1 2612 6 1 181011 1 5 29 6 1 7 3 2 1 25 7 26 1 272815 1 212328 1 241820 1 28 8 6 1 291011 1 0 21

%%
12
25
10
1
4
0
0
1
3
4

15
1
9
3
2
1

22
18
20
1

26
12
6
1

18
10
11
1
5

29
6
1
7
3
2
1

25
7

26
1

27
28
15
1

21
23
28
1

24
18
20
1

28
8
6
1

29
10
11
1
0

21

%%122510 1 4 0 0 1 3 4 15 1 9 3 2 1 221820 1 2612 6 1 181011 1 5 29 6 1 7 3 2 1 25 7 26 1 272815 1 212328 1 241820 1 28 8 6 1 291011 1 0 21

%%
12
25
10
1
4
0
0
1
3
4

15
1
9
3
2
1

22
18
20
1

26
12
6
1

18
10
11
1
5

29
6
1
7
3
2
1

25
7

26
1

27
28
15
1

21
23
28
1

24
18
20
1

28
8
6
1

29
10
11
1
0

21

%%122510 1 4 0 0 1 3 4 15 1 9 3 2 1 221820 1 2612 6 1 181011 1 5 29 6 1 7 3 2 1 25 7 26 1 272815 1 212328 1 241820 1 28 8 6 1 291011 1 0 21

%%
12
25
10
1
4
0
0
1
3
4

15
1
9
3
2
1

22
18
20
1

26
12
6
1

18
10
11
1
5

29
6
1
7
3
2
1

25
7

26
1

27
28
15
1

21
23
28
1

24
18
20
1

28
8
6
1

29
10
11
1
0

21

%%122510 1 4 0 0 1 3 4 15 1 9 3 2 1 221820 1 2612 6 1 181011 1 5 29 6 1 7 3 2 1 25 7 26 1 272815 1 212328 1 241820 1 28 8 6 1 291011 1 0 21

%%
12
25
10
1
4
0
0
1
3
4

15
1
9
3
2
1

22
18
20
1

26
12
6
1

18
10
11
1
5

29
6
1
7
3
2
1

25
7

26
1

27
28
15
1

21
23
28
1

24
18
20
1

28
8
6
1

29
10
11
1
0

21

%%122510 1 4 0 0 1 3 4 15 1 9 3 2 1 221820 1 2612 6 1 181011 1 5 29 6 1 7 3 2 1 25 7 26 1 272815 1 212328 1 241820 1 28 8 6 1 291011 1 0 21

%%
12
25
10
1
4
0
0
1
3
4

15
1
9
3
2
1

22
18
20
1

26
12
6
1

18
10
11
1
5

29
6
1
7
3
2
1

25
7

26
1

27
28
15
1

21
23
28
1

24
18
20
1

28
8
6
1

29
10
11
1
0

21

%%122510 1 4 0 0 1 3 4 15 1 9 3 2 1 221820 1 2612 6 1 181011 1 5 29 6 1 7 3 2 1 25 7 26 1 272815 1 212328 1 241820 1 28 8 6 1 291011 1 0 21

%%
12
25
10
1
4
0
0
1
3
4

15
1
9
3
2
1

22
18
20
1

26
12
6
1

18
10
11
1
5

29
6
1
7
3
2
1

25
7

26
1

27
28
15
1

21
23
28
1

24
18
20
1

28
8
6
1

29
10
11
1
0

21

Figure 14: Full attention maps: chain-of-thought prompting, 21M parameter model. Columns:
heads. Rows: layers. The bottom right corner is shown in Figure 11A.

33

15 21 23 28 24 18 20 28 8 6 29 10 11 0 21

15
21
23
28
24
18
20
28
8
6

29
10
11
0

21
15 21 23 28 24 18 20 28 8 6 29 10 11 0 21

15
21
23
28
24
18
20
28
8
6

29
10
11
0

21

15 21 23 28 24 18 20 28 8 6 29 10 11 0 21

15
21
23
28
24
18
20
28
8
6

29
10
11
0

21
15 21 23 28 24 18 20 28 8 6 29 10 11 0 21

15
21
23
28
24
18
20
28
8
6

29
10
11
0

21

15 21 23 28 24 18 20 28 8 6 29 10 11 0 21

15
21
23
28
24
18
20
28
8
6

29
10
11
0

21
15 21 23 28 24 18 20 28 8 6 29 10 11 0 21

15
21
23
28
24
18
20
28
8
6

29
10
11
0

21

Figure 15: Attention maps (for the last 15 tokens): chain-of-thought prompting, but with the
separator removed. 21M parameter model. Columns: heads. Rows: layers. Corresponding
version with separator is shown in Figure 11A.

34

F.5 Extension to Stochastic or Noisy Functions . 51
F.6 Necessity of Dependence on Rn . 52
F.7 Broad ICL Skills Require Non-Context-Free Generative Process 54

G Proof of Theorem 2 54

H Linguistic Grammar Formalisms and Design Choices 55
H.1 Role of Yield Function . 55
H.2 Derivation Trees with Infinitely Many Node Types 58
H.3 Repeating Structures in Grammar Formalisms . 58

I Details for Document Scripts 62

J HMM5 Training Datasets 64

K Effect of |Ω| 64

L Ablations 65

M Additional Results 65

N Heldout Analysis 65

O GPT-3 Experiment 65

A Task Definitions

Propositional 1 literal:

1. fi(z) = x (INVERSE)

4 literals:

2. (fi(x) = z ∧ f j(z) = y) ∨ (fi(y) = z ∧ f j(z) = x) (MISSINGLINK)

3. (fi(x) = z ∧ fi(z) = y) ∨ (f j(z) = x ∧ f j(z) = y)

4. (fi(x) = z ∧ f j(z) = y) ∨ (fi(x) = y ∧ f j(x) = z)

5. (fi(x) = z ∧ fi(z) = y) ∨ (f j(x) = y ∧ f j(z) = x)

6. (fi(x) = z ∧ (f j(z) = y)) ∨ (fi(z) = x ∧ (f j(y) = z))

7. (fi(x) = z ∧ (f j(z) = y)) ∨ (fi(z) = x ∧ (fk(z) = y))

8 literals:

8. (fi(x) = z ∧ (f j(y) = x)) ∨ (fi(z) = x ∧ (f j(x) = y)) ∨ (f j(y) = z ∧ (fk(y) = x)) ∨
(f j(z) = y ∧ (fk(x) = y))

9. (fk(x) = z ∧ (f j(y) = x)) ∨ (fi(x) = z ∧ (fk(x) = y)) ∨ (fi(z) = x ∧ (fk(y) = x)) ∨
(f j(z) = y ∧ (fi(y) = x))

10. (fi(x) = z ∧ (f j(y) = x)) ∨ (fi(z) = x ∧ (f j(x) = y)) ∨ (fi(y) = z ∧ (fk(y) = x)) ∨
(fi(z) = y ∧ (fk(x) = y))

35

Composed

11. ∃a : a = fi(x) ∧ z = f j(a)

12. ∃a : (fi(x) = z ∧ f j(a) = y ∧ fk(z) = a)) ∨ (fi(z) = x ∧ f j(a) = z ∧ fk(y) = a))

This is an extension of MISSINGLINK (#2) where a chain of three (rather than two) functions
connects x and y; one of the two intervening objects is the target output (z); the other one
(a) is unobserved.

Binary Classification

13. (y = fi(x) ∧ z = `i) ∨ (y = f j(x) ∧ z = `j)

14. (y = fi(x) ∧ z = `i) ∨ (x = fi(y) ∧ z = `j)

15. (y = fi(x) ∧ z = `i) ∨ (∃a : (x = fi(a) ∧ a = fi(y)) ∧ z = `j))

B Example Documents

Here we provide some example document scripts. For each example, we assign a color to each
print statement, and color tokens in the document by what statement produced it.

B.1 Example 1

LOOP OVER x0 DO
FOR SOME x1 SUCH THAT f1(x0) = x1 DO
PRINT x1

END
FOR SOME x1 SUCH THAT f0(x1) = x0 DO
IF f5(x1) = x0 THEN
PRINT x0
PRINT x1
ELSE
IF f3(x1) = x0 THEN
PRINT x1

ELSE
PRINT x1

ENDIF
ENDIF
PRINT x0
PRINT x0

END
ENDFOR

Sampled Document:
20 1 1 1 14 25 25 25 16 16 16 16 8 12 12 12 19 29 29 29 29 25 28 28 28 20 27 27

27 6 8 8 8 7 14 14 14 28 17 17 17 17 18 18 18

36

B.2 Example 2

LOOP OVER x0 DO
FOR SOME x1 SUCH THAT f0(x0) = x1 DO
FOR SOME x2 SUCH THAT f0(x0) = x2 DO
FOR SOME x3 SUCH THAT f6(x3) = x1 DO
PRINT x3

END
IF f4(x2) = x0 THEN
PRINT x1

ELSE
IF f9(x1) = x2 THEN
PRINT x1
ELSE
PRINT x0
ENDIF

ENDIF
END
IF f8(x1) = x0 THEN
PRINT x1
PRINT x1
PRINT x1
PRINT x1
PRINT x1
PRINT x1
ELSE
PRINT x0
PRINT x1
ENDIF

END
ENDFOR

Document:
19 1 1 1 24 4 4 4 27 27 27 15 15 15 2 10 10 10 8 21 21 21 18 17 17 17 17 17 17 17

22 22 22 1 25 25 25 26 26 26 26 22 7 7 7

B.3 Example 3

LOOP OVER x0 DO
FOR SOME x1 SUCH THAT f5(x0) = x1 DO
FOR SOME x2 SUCH THAT f9(x2) = x1 DO
PRINT x2
END

END
FOR SOME x1 SUCH THAT f7(x1) = x0 DO
PRINT x0

END
FOR SOME x1 SUCH THAT f0(x0) = x1 DO
IF rel8(x1) = x0 THEN
PRINT x1

37

ELSE
PRINT x1
ENDIF

END
FOR SOME x1 SUCH THAT f2(x1) = x0 DO
PRINT x1

END
LOOP OVER x1 DO
PRINT x0

ENDFOR
FOR SOME x1 SUCH THAT f0(x0) = x1 DO
PRINT x1
PRINT x0

END
FOR SOME x1 SUCH THAT f4(x0) = x1 DO
PRINT x0

END
ENDFOR

Document:
26 26 6 26 26 26 26 26 26 26 26 26 26 26 26 26 26 6 29 29 29 29 29 29 29 29 29 29

29 29 29 29 29 29 25 27 27 21 27 27 27 27 27 27 27 27 27 27 27 27 27 27 17 22 22 22
22 22 22 22 22 22 22 22 22 22 22 22 22 22 2 2 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 25 28
25 25 25 25 25 25 25 25 25 25 25 25 25 25 19 9 9 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 23 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 11 9 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 23 2 23 23 23 23 23 23 23 23 23 23 23 23 23 23

B.4 Example 4: Representability of Test Tasks

The following script produces documents with prefixes matching the function evaluation test
task, for a function g. The outermost loop introduces a variable that represents the separator.

LOOP OVER x0 DO
LOOP OVER x1 DO
PRINT x1
FOR SOME x2 SUCH THAT f(x1) = x2 DO
PRINT x2
END
PRINT x0

ENDFOR
ENDFOR

Expressing Tasks and Description Length. The function evaluation task is expressed (with
free variable x1 representing the input) by

FOR SOME x2 SUCH THAT f(x1) = x2 DO
PRINT x2

END

The syntax tree of this script has three nodes (variable introduction, 〈block〉 printing); the
function is defined by one literal.

38

The MISSINGLINK task is expressed (with free variables x1, x2 representing the input, for
functions f , g) by

FOR SOME x3 SUCH THAT f(x1) = x3 DO
IF g(x3) = x2 DO

PRINT x3
ELSE:

FOR SOME x4 SUCH THAT f(x2) = x4 DO
PRINT x4

END
END

END

The syntax tree of the script has nine nodes (twice variable introduction, if, twice printing,
four times 〈block〉); the function is defined using four literals (2-DDF with 2 disjuncts). More
generally, representing a 2-DNF with d disjuncts (i.e., 2d literals) can be achieved with at most
6d− 3 nodes: d FOR SOME statements, d− 1 IF-THEN-ELSE statements, 3d− 2 <block>s,
and d PRINT statements.10

Binary Tasks The Relation Classification task is expressed (with free variables x1, x2, and for
functions f , g), if x3 and x4 denote the labels, as

IF f(x1) = x2 DO
PRINT x3

ELSE
IF g(x1) = x2 DO

PRINT x4
ELSE

// undefined
END

END

Function Composition Function composition is expressed as

FOR SOME x2 SUCH THAT f(x1) = x2 DO
FOR SOME x3 SUCH THAT g(x2) = x3 DO

PRINT x3
END

END

The CHAINOFTHOUGHT and EXPLANATION versions are expressed as

FOR SOME x2 SUCH THAT f(x1) = x2 DO
PRINT x2
FOR SOME x3 SUCH THAT g(x2) = x3 DO

PRINT x3
END

END

10Strictly speaking, representation is sometimes only approximate because functions fi are not in general invertible.
Our experiments exclude inputs without unambiguous solutions, partly mitigating this.

39

Function Evaluation

● ● ● ● ● ●
●

● ● ● ●●●●●●●●

● ● ● ● ● ●

●

● ● ● ●●●●●●●

● ● ● ● ● ●
●

●
● ● ●●●●●●●●

● ● ● ● ● ●

●

●
● ● ●●●●●●●

● ● ● ● ● ●

●

● ● ● ●●●●●●●●●●●●●●●●

1 2 3 4 5

1 10 100 1000 100001 10 100 1000 100001 10 100 1000 100001 10 100 1000 100001 10 100 1000 10000

Propositional

● ● ● ● ●
●

●

● ● ●●●●●●●●

● ● ●
●

●
● ●

●
●

●
●●

●●●●●
●

● ● ●
●

●

●
● ● ●●●

●
●●●

● ● ●
●

●
●

● ●

●
●

●

●●
●●●

● ● ● ● ●

●

● ●

●

●●●●
●
●

● ● ●
● ● ●

●
●●

●
●
●

●●●

● ● ● ● ●

● ●

●● ●
●
●

●
●

● ● ● ●
●

● ● ● ●●●●●●●●

● ●
● ●

●

●
●

●
●

●●●●●●
●

● ● ●
●

●

● ●
●

●
●●●●●

●●●

● ● ●

●

●

●
●

●●
●
●

●

● ●
●

●

●
● ●

●● ●●
●
●
●

● ● ●
●

●

●

●

●
●

●

●●●●

● ● ● ● ●
● ●

●

● ●

●●
●●

●
●●
●

● ● ● ● ●
● ●

●
● ●●

●●
●
●●●

● ● ● ● ● ●
●

●
●

● ●●●

●
●
●

● ● ●
● ●

●

● ●
●

●

●●
●
●

● ●
●

● ●

●
● ● ●●●●●●●

● ● ● ● ●

●

●
● ●

●

●

●
●
●
●●

●

●
● ●

●
●

●
● ●●

●●
●

●
●

●

●

●
●

●

●●●

●●

● ●

●
●

●

●

●●
●
●●

●
● ● ● ●

● ●
●

●

●

●

●
●

● ●
●

●

●
●

● ●
●

●
●
●●●●

● ● ●
●

●

● ● ●●●●●●●●

● ● ●
●

●

●
● ●

●

●
●

●

●

●
●●
●

●
●

●

●

●

●

●
●

●
●●●

●

●
● ●

●
● ●

●

●

●

●

●●

● ● ● ●
●

●
●

●
●

●

●
●
●●●

● ● ● ● ●
● ●

●
●

●

●

●

●

●

●
● ●

●
●

● ●

●
●

●●●
●

● ● ●
●

●

●
●

●

●
●●●

● ●
● ● ●

●
●

●
●●●

●
●●

●
●

● ● ● ● ● ●
●

●
● ● ●●●●●●●●●●●●●●●

● ● ● ●
●

● ●

●
●

●
●

●
●●●

●●●●
●●
●●●●●

● ● ● ●
●

●

●
●

●

● ●●●
●

●●●
●●●●

●
●

● ● ●
●

● ●
●

● ● ●
●

●●
●●●

●●
●●●●●●●●

● ● ● ●
●

●

●

● ● ●
●●●●●

●●●
●●●●●●

● ● ● ● ●
● ●

●
● ●

●

●
●●●

●●●●●●●●●●

● ● ● ●
● ●

● ● ● ●
●

●●
●
●
●●
●●

●
●●

● ● ● ● ● ●
●

● ●

●
●●●●

●●
●●
●●●●●

●

● ● ● ●
●

●

●
● ●

● ●●●●●

●
●

●●●●
●●
●
●

● ● ● ● ● ● ●
●

●

●
●●

●●

●●●●
●
●●
●

●●●●

1 2 3 4 5

1 10 100 1000 100001 10 100 1000 100001 10 100 1000 100001 10 100 1000 100001 10 100 1000 10000

Quantified

● ● ● ● ●
● ● ● ●

● ●●●●●●●●
● ●

●
● ●

●
● ●●●

●●●
●●

● ● ● ● ● ● ● ● ●●●●●●●
● ● ● ●

●
●

● ●

●
●●

●●●
●

● ● ● ● ● ● ● ● ● ● ●●●●●●●●
● ● ●

●

●
● ●

●
●
●●

●
●

●

● ● ● ●
● ● ●

● ● ●● ●●
●●●

● ● ● ● ● ● ● ●●
●
●
●

● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●
●●

● ● ● ● ● ● ● ● ● ● ●
●●●●

●●
●●●●

●●
●

1 2 3 4 5

1 10 100 1000 100001 10 100 1000 100001 10 100 1000 100001 10 100 1000 100001 10 100 1000 10000

Binary

● ● ●

●

●

●

●

●
●

●●●●●●●●

● ●
●

● ●

●
●

●
● ●●

●●●●●●

● ● ●
●

●

●
●

●

●

● ●●●●●
●

●

●

●
●

●
● ●

●

●
● ●

●●
●●

●●
●

● ●
● ●

●

●

●
● ●●●●

●
●
●●

● ●
●

●

● ●

●
●

●

●
●●

●
●●●

●
●

●

● ●
●

●

●

●

●
● ●●

●
●
●●●●

● ● ●
● ●

●
● ●

●

●
●●●

●●
●
●

●
●

●

●

●

● ●
●

●
●

●
●

●
●

●
●
●

● ●
● ● ●

●
●

●
●

● ●
●●●●●●●

● ●
●

● ●

●
●

●
●

●●●●●●●
●

● ●

● ●

● ●
●

● ● ●
●

●
●●●●

● ● ●

● ●

●
●

●
●

● ●●
●●●●●●

●●
●●●●●●

● ● ●

●
●

●
● ● ●

● ●●●
●●●●●●●

●
●●
●●●

● ● ●

●
●

●
● ● ●

●

●●●●●●●●●●●●
●●●
●

1 2 3 4 5

1 10 100 1000 100001 10 100 1000 100001 10 100 1000 100001 10 100 1000 100001 10 100 1000 10000

Figure 16: Results across worldsM for the medium-size LM.

and

FOR SOME x2 SUCH THAT f(x1) = x2 DO
FOR SOME x3 SUCH THAT g(x2) = x3 DO

PRINT x3
END
PRINT x2

END

C Training Details

1% of the dataset was reserved as dev data. We optimized models using AdamW at a learning
rate of 1e-4 and a batch size of 64, and annealed with a cosine schedule with warmup includ-
ing 1000 warmup steps and 2e6 training steps11 We chose these parameters in preliminary
experiments to minimize pretraining cross-entropy, without yet testing in-context learning
capabilities.

D Stability to World

We re-trained the medium-size model on four more worlds (i.e., resampling the functions in F),
finding consistent results across worlds (Figure 16).

11Corresponding to > 8e9 tokens.

40

Function Evaluation

1 21 23 1 24 18 1 28 8 1 29 10 1 0

1
21
23
1

24
18
1

28
8
1

29
10
1
0

28 21 23 24 18 28 8 29 10 0

28

21

23

24

18

28

8

29

10

0

Function Classification

1 2 1025 1 2 3 17 0 2 0 8 1 2 9 14 0 2 5 12

1
2

10
25
1
2
3

17
0
2
0
8
1
2
9

14
0
2
5

12

4 9 0 3 4 1 1025 1 3 17 0 0 8 1 9 14 0 5 12

4
9
0
3
4
1

10
25
1
3

17
0
0
8
1
9

14
0
5

12

Missing Link

4 2 10 1 25 2 3 1617 2 0 13 8 2 9 1714 2 5 16

4
2

10
1

25
2
3

16
17
2
0

13
8
2
9

17
14
2
5

16

4 10 9 3 9 4 10 1 25 3 1617 0 13 8 9 1714 5 16

4
10
9
3
9
4

10
1

25
3

16
17
0

13
8
9

17
14
5

16

Chain of Thought

28 8 6 1 29 10 11 1 0 21

28

8

6

1

29

10

11

1

0

21

15 21 23 28 24 18 20 28 8 6 29 10 11 0 21

15
21
23
28
24
18
20
28
8
6

29
10
11
0

21

Figure 17: Attention Maps for three tasks, with (top) or without (bottom) separator; only
showing the end of the prompt for visibility. All results are for the 21M parameters model; for
the second head in the top layer. FunctionEvaluation and the chain-of-thought task lead to very
well-defined attention patterns. Attention pattern on FunctionClassification and MissingLink
are more diffuse, mirroring increased difficulty. Without separators, attention patterns are more
diffuse, but the periodic structure of the prompt is visible at least in the Function Evaluation
task, suggesting that the separator helps with, but is not fully necesssary for, inducing the
compositional structure of the prompt.

E Attention Maps

See Figure 17.

F Proof of Theorem 1

F.1 Formal Definition of Compositional Attribute Grammars

Here, we provide a full formal definition of our notion of compositional generative process. All
content is also contained in the main text, but we include this formal definition for reference.

We discuss the relationship to other grammar formalisms in the linguistic literature, and
explain design choices, in Section H.

A Compositional Attribute Grammar is a tuple (G, Ω, Σ, spell : ω 7→ ω, a,R,Y) consisting
of the following:

F.1.1 A Standard PCFG Generating Derivation Trees

1. a standard PCFG G consisting of (e.g., Manning and Schütze [1999])

(a) a finite set NT of nonterminals

(b) a designated start symbol START ∈ NT

(c) a finite set T of terminals

(d) a finite set of production rules ψ of the form

n⇒ n1 . . . nk (13)

41

where n ∈ NT; ni ∈ NT∪ T.

(e) for each nonterminal n, a probability distribution Pn(·) over all production rules
whose LHS has this nonterminal. In particular, the set of such production rules is
nonempty for each nonterminal.

such that the set T of derivation trees is the smallest set, with associated map root : T →
T∪NT and a family of probability distributions P(·|n) (n ∈ T∪NT), such that:

(a) If t ∈ T, then t ∈ T and root(t) = t, and Pt(t) = 1.

(b) If t1, ..., tk ∈ T with root (non)terminals n1, ..., nk, and ψ is a production rule of the
form n⇒ n1 . . . nk, then the tree τ with root n and children t1, ..., tk is an element of
T . We will write

τ := ψ[t1, ..., tk] (14)

for this tree. Furthermore, root(τ) = n and

P(τ|n) = Pn(ψ)
k

∏
i=1

P(ti|ni). (15)

F.1.2 A yield operation mapping derivations to strings

Having defined the PCFG backbone creating derivation trees, we now need to define how these
are mapped to linear strings of tokens. This mapping is where the distinctive properties where
CAGs (and other linguistic grammar formalisms, Appendix H) generalize over PCFGs come in.
The following ingredients are needed:

2. a finite alphabet Σ, a finite universe Ω, and a map spell : ω 7→ ω : Ω→ Σ

3. a map a : NT∪ T→N, called the “arity”

4. a setR of sources of randomness12

5. A partial function mapping trees and their attributes to linear strings of tokens (see
Figure 1B and Figure 19 for illustration):

Y : T ×Ω∗ ×R 7→ Σ∗ (16)

such that
Y(τ, ξ, r) (17)

is well-defined iff the number of attributes matches the correct arity: |ξ| = aroot(τ), and the
following holds:

(a) If t ∈ T, then Y(t, ξ, r) is arbitrary.13

The terminals in Figures 1 and 18–19 all exemplify this. Some of them (shown in green)
depend on their attribute variable(s) ξ; others (shown in yellow) do not.

12A formal definition is in terms of the set R of infinite trees where (1) each node is an independent coin flip,
(2) every node has a countably infinite sequence of daughters. For any r ∈ R, we will write r0, r1, r2, . . . for the
daughters—these are independent random objects and themselves elements ofR.

13Technically, it needs to be measurable w.r.t. r for each choice of t and ξ.

42

y=capital(x)

x yparticularly its capital

Indonesia, particularly Jakarta, its capital, is

x : Indonesia

x : Indonesia

x : Indonesia

x : Indonesia
x : Indonesia
y : Jakartax : Indonesia

Figure 18: Attributes (or variables) are passed through the derivation tree. This can be formal-
ized using attribute lists; here, the nonterminals would have one (〈x〉) or two (〈x, y〉) attributes.

(b) For a tree
τ := ψ[t1, .., tk] (18)

arising from the production rule

ψ : n⇒ n1, ..., nk (19)

with daughter trees t1, . . . , tk and root(τ) = n, the yield

Y(τ, ξ, r) ∈ Σ∗ (20)

equals a concatenation of yields of children:

Y(tι1 , η1, r1)...Y(tιq , ηq, rq) ∈ Σ∗, (21)

where

i. r0, ..., rk ∈ R are mutually independent sources of randomness derived from r,14

ii. q ∈N and ι ∈ {1, ..., k}q are determined by ψ, r0, ξ.
iii. For j = 1, . . . , q, the tuple ηj ∈ Ωanj is determined by ψ, r0, ξ.

Informally, ι indicates the ordering and multiplicity of each ti. In the simplest case, represented
by ordinary Context-Free Grammars, each daughter tree appears exactly once in some fixed
order, so we can take q = k and ι = 〈1, . . . , k〉. It is known that more general capabilities are
needed to account for the structure of natural language, and a range of variants of (21) have
been proposed in the linguistic literature. See Appendix H.3 for more on this. One example is
the case of “loop” operations, as in Figures 1 and in 193–4: Here, the same daughter tree can
be repeated, i.e., some indices appear in ι multiple times.
Each ηj is the attribute vector for the tree τιj and has the length matching the appropriate
arity. It supports both passing of attributes along the derivation tree, and the introduction
of new attributes which are then made available to daughter subtrees, both illustrated in
Figure 18 and Figure 193–4.

Remark. Extension to a typed version, where Ω is classified into a set of types and each
nonterminal requires its attributes to have appropriate types, is straightforward.

43

y=capital(x)

x yparticularly its capital

Indonesia, particularly Jakarta, its capital, is

unemployment(x)

Unemployment reached 7.3% in California, 5.6% in
Mississippi, 5.9% in Michigan, 6.8% in New Mexico, [...]

in

loop

Unemployment reached x

(, [x=Indonesia],
00101101
10111101
10101010)

(, [],
00101101
10111101
10101010)

unemployment(x)

Unemployment reached 5.6% in Mississippi, 7.3% in
California, 6.8% in New Mexico, 5.9% in Michigan, [...]

in

loop

Unemployment reached x

(, [],
00011010
10110101
11110100)

Derivation
Tree

Arguments
Source of

Randomness

y=capital(x)

x yparticularly its capital

France, particularly Paris, its capital, is

(, [x=France],
00101101
10111101
10101010)

1

2

3

4

Figure 19: The yield operation Y maps derivation trees together with attributes and a source
of randomness to strings. Unlike the standard yield function of context-free grammars, it is
capable of compositionally re-using and re-combining subtrees in two ways: First, it “wires” the
attributes of the daughter trees and its own attributes (1–2). Second, it can repeat daughter trees,
with different attributes, as in the gapping construction [Ross, 1970] (3–4). The first capacity can
be simulated in context-free grammars. The second capacity goes beyond context-freeness, and
is possible in mildly-context sensitive grammar formalisms. We allow both of these capabilities
to be influenced by a source of randomness, for example, to allow variable ordering in iteration
constructions without blowing up the set of production rules (compare 3 and 4).

44

y=capital(x)

x yparticularly its capital

Indonesia, particularly Jakarta, its capital, is

y=capital(x)

x yparticularly its capital

France, particularly Paris, its capital, is

1

2

x

Indonesia

x=Indonesia

⊕x=Indonesia

3
x=random

Indonesia, particularly Jakarta, its capital, is

Figure 20: We illustrate three closure properties stated in Section F.2: Projection onto a variable
(1), concatenation of derivation trees (2), and marginalization of variables (3). A CAG permits
concatenation of all trees, though production probabilities will distinguish between more
probable (like this example) and less probable concatenations (e.g., “Indonesia Paris”).

F.2 Regularity Assumptions

To ensure that all strings in Σ∗ can be constructed, we assume the following closure properties
of the set T of derivation trees (Figure 20). Let amax the maximum arity of any nonterminal.

1. Closure under PROJECTION (Figure 20A): For 1 ≤ i ≤ n ≤ amax, there is τprojection,i,n ∈ T
such that Y(τprojection,i,n, ξ, r) ≡ ξi for ξ ∈ Ωn. This is marked with variable names in
Figure 1.

2. Closure under CONCATENATION (Figure 20B): For each τ1, τ2 ∈ T , aroot(τ1) = aroot(τ2),
there is some production rule ψ such that Y(ψ[τ1, τ2], ξ, r) equals

Y(τ1, ξ, r1)Y(τ2, ξ, r2).

3. Closure under MARGINALIZATION (Figure 20C): For each τ ∈ T , there is a production
rule ψ such that, for ξ ∈ Ωaτ−1, Y(ψ[τ], ξ, r) has the infix

Y(τ, 〈ω, ξ1, ..., ξaτ−1〉, r1),

where ω is a uniform sample from Ω determined by r0.

4. Closure under CONSTANTS: If σ ∈ Σ and 1 ≤ n ≤ amax, then there is τsymbol(σ),n such that
Y(τsymbol(σ), ξ, r) ≡ σ for ξ ∈ Ωn.

This property is trivially satisfied in standard PCFGs.

5. There are constants c0, c1 > 0 such that, for any nonterminal n with arity zero (a(n) = 0),
there is a tree τ′ containing a subtree τ with root nonterminal n with root(τ′) = START
with D[τ′] ≤ c0 + D[τ] such that τ is used in Y(τ′, 〈〉, r) with probability (over r) at least
c1. Here, by “used” we mean that, along the path from the root of τ′ down to the root of τ,

14Formally, they are different daughter trees of r.

45

all subtrees appear in the index list ι generated for the dominating production rule. An
implication of “being used” is that the yield of τ will occur as an infix inside the yield of
τ′.

Informally, this states that all nonterminals get used by some document-level derivation
tree at probability bounded away from zero. In our experiments, c0 ≤ 2, c1 = 1 since all
nonterminals with zero arity (i.e., document scripts without free variables) can directly
generate full documents (see Section I).

6. While documents can be unboundedly long, the expected document length is finite:
∑d p(d)|d| < ∞.

This is needed to make autoregressive language modeling (Equation 4) well-defined.

Assumptions 1–5 are comparable to the regularity assumptions that [Xie et al., 2022, As-
sumption 5] made for their HMM model, which, inter alia, state that all transitions within a
mixture component have nonzero probability bounded away from zero, and that all tokens can
be emitted.

Another common assumption in the literature is that the PCFG is proper, i.e., that the
probability of all derivation trees sums up to one (rather than a smaller number). We do not
require it here as it is not strictly necessary to prove our results. It is always satisfied when the
PCFG is created as the MLE from an empirically observed set of derivation trees [Chi, 1999].

F.3 Preparatory Lemmas

We first recall the definition of Iteration Complexity of a CAG:

Definition 3 (Formal Definition of Iteration Complexity). Let any CAG be given. For n ≤ |Ω|, let
the CAG’s Iteration Complexity Rn be the smallest number such that the following holds for all θ ∈ T ,
and all pairwise distinct x1, ..., xn. We consider all trees τ ∈ T such that for all ξ ∈ Ωaτ , Y(τ, ξ, r)
with probability at least pτ > 0 has an infix whose distribution (over the randomness in r) matches

Y(θ, 〈x1, ξ1...aτ 〉, r1)...Y(θ, 〈xN , ξ1...aτ 〉, rn). (22)

There is always at least one such tree (Lemma 6). We define Rn by the requirement that, for at least one of
these τ,

D[τ] ≤ Rn + D[θ] +
1
ρ

log
[

pτ ·
(
|Ω|
n

)]
. (23)

Intuitively, Rn indicates how much more complex repetition is compared to a single occur-
rence; the third term accounts for the number of different choices of x1, . . . , xn; it disappears in
the simple case where the yield of τ contains (2) for each sequence x1, . . . , xn at equal probabili-

ties pτ = (|Ω|n)
−1

.

Example 4. The prime example is a production rule mapping a nonterminal to a single nonterminal, and
a corresponding yield Y(ψ[τ], 〈〉, r) of the form Y(τ, 〈x1〉, r1) . . .Y(τ, 〈xn〉, rn), with the permutation
determined by r, as in Figure 1B bottom. If each sequence Y(τ, 〈x1〉, r1) . . .Y(τ, 〈xn〉, rn) is generated
with probability

p(n) ·
(
|Ω|
n

)−1

, (24)

then

Rn ≤ 1− 1
ρ

log
∞

∑
k=n

p(k) (25)

46

because substituting this for Rn makes (23) true (we set w(n) := ∑∞
k=n p(k)):

Rn + D[τ] +
1
ρ

log

[
w(n) ·

(
|Ω|
n

)−1

·
(
|Ω|
n

)]

=Rn + D[τ] +
1
ρ

log w(n)

=(1− 1
ρ

log w(n)) + D[τ] +
1
ρ

log w(n)

=1 + D[τ]

=D[ψ[τ]]

For example, under a power law p(n) ∼ n−q15:

Rn . 1 +
q− 1

ρ
log n (26)

Such sublinear growth guarantees convergence of ICL errors to zero as the prompt length increases.

Lemma 5. For some constant ρ > 0, any n ∈ NT and any τ ∈ T with root(τ) = n,

P(τ|n) ≥ exp(−ρ ·D[τ]). (27)

Proof. Let pmin be the minimum probability of any production rule in the PCFG, and set
ρ = − log pmin. Then, the result follows from induction over the height of τ.

Lemma 6. Consider any CAG satisfying the regularity assumptions. If φ ∈ T , and x1, . . . , xn ∈ Ω are
all distinct, there is a tree τ ∈ T such that Y(τ, ξ1...aτ , r) has an infix whose distribution matches

Q(r) := Y(φ, 〈x1, ξ1...aτ 〉, r1)...Y(φ, 〈xN , ξ1...aτ 〉, rN) (28)

with probability pτ > 0.

Proof. Use the MARGINALIZATION property (Section F.2.3) to obtain a derivation tree whose
yield is Y(φ, 〈x, ξ1...aτ 〉, r) where x ∈ Ω is uniformly random. Then use the CONCATENATION

property (Section F.2.2) to obtain a derivation tree whose yield has the same distribution as

Y(φ, 〈x1, ξ1...aτ 〉, r1)...Y(φ, 〈xN , ξ1...aτ 〉, rN) (29)

with probability pτ = |Ω|−n.

F.4 Proof of Theorem 1

Proof of the Theorem. In a first step, we will bound the description length of the prompt. In the
second step, we bound the probability assigned to a prompt by the autoregressive predictive
model M. In the third step, we will use this to bound the error on completing it. Step 3 is similar
to ideas from the completeness proof of Solomonoff Induction in Algorithmic Information
Theory (specifically Claim 5.2.2 in Li and Vitányi [2008])—which studies Turing-complete
generative processes—but we adapt these to our setting of linguistically motivated generative
processes.

15Finiteness of expected document length entails q > 2.

47

y=φ(x)
x s

y

τ

τξ

τ'ξ

............... x1 φ(x1) s x2 φ(x2) s x3 φ(x3) s x4 φ(x4) s

X φ(X) S

START

⊕

Figure 21: Construction of the derivation tree τ′ξ in the proof of Theorem 1. Rectangles denote
individual nodes; triangles denote (sub)trees. The innermost derivation tree τ describes a single
string xφ(x)s, where x and s are variables; it is obtained using the projection and concatenation
operations (Section F.2). The subtree τψ denoted by the lowest triangle defines some function
ψ; the number of nodes inside it is D[τψ]. Further outwards, the tree τξ is chosen using the
definition of Rn; it has the property that its yield contains an n-fold repetition of the yield of τ
applied to objects x1, x2, . . . , xn. Finally, the tree τ′ξ embeds τξ inside some tree whose root is the
start symbol nonterminal; its existence is guaranteed by regularity assumptions.

Bounding Description Length of Prompt. We begin by considering any sequence ξ :=
x1 . . . xn ∈ Ωn with pairwise distinct elements. First, by the closure under PROJECTION, CON-
CATENATION, and CONSTANT properties (Section F.2), there is a derivation tree τ ∈ T such that
for all x ∈ Ω (Figure 21):

Y(τ, 〈x〉, r) = xφ(x)s ∈ Σ∗ (30)

and
D[τ] ≤ D[τφ] + 3 (31)

as in Figure 1C. Now let τξ be a derivation tree such that its yield has an infix

Y(τ, 〈x1〉, r1)...Y(τ, 〈xN〉, rN) (32)

with probability ≥ pτξ
> 0 such that its description length τξ satisfies:

D[τξ] ≤ Rn + D[τφ] + 3 + ρ−1 log
[(
|Ω|
n

)
pτξ

]
(33)

Remark 1. The bound is derived for a prompt where examples have the simple form xφ(x). In
a CAG reflecting naturalistic text distributions, analogous bounds follow for more naturalistic
prompts, or–if the CAG can derive those–even for prompts with unnaturally permuted labels.
The key is that a tree τ is constructed whose yield represents an individual example.

48

Remark 2. If s ∈ Ω as in our experiments, one can obtain an on-average bound over all s, with
constants independent of s, by instead considering

Y(τ, 〈x, s〉, r) = xφ(x)s ∈ Σ∗ (34)

obtained using PROJECTION and CONCATENATION. Then by the closure under MARGINALIZA-
TION (Section F.2.3) there is a tree τ′ξ such that

Y(τ′ξ , 〈〉, r) = Y(τξ , 〈s〉, r′) (35)

for each s ∈ Ω with probability 1
|Ω| . The rest of the proof then proceeds with this τ′ξ in place of τξ .

This alternative reasoning justifies why, in our experimental setup, the constants in Theorems
1–2 do not depend on Ω.

Bounding Language Model Probability of Prompt. By Regularity Assumption 5 in Sec-
tion F.2, there is some τ′ξ with root(τ′ξ) = START containing τξ as a subtree with D[τ′ξ] ≤
c0 + D[τξ], and furthermore, with probability c1 > 0 over r, Y(τ′ξ , 〈〉, r) contains an infix dis-
tributed identically to Y(τξ , 〈〉, r′), and any such string will in turn have the infix (32) with
probability pτξ

. Hence, Y(τ′ξ , 〈〉, r) contains the infix (32) with probability (over r) at least c1 pτξ
.

For any ξ, let k = (d + 2) · n be the length of the prompt Qn(ξ), i.e. the prompt Pn for the
sequence ξ. We will now lower-bound the model assigned to the predictor to Qn(ξ). Now by
Lemma 5 and Equation (33):

P(τ′ξ |START) ≥ exp(−ρc0 − ρ D[τξ])

≥ exp
(
−ρc0 − ρ ·

(
Rn + D[τφ] + 3 + ρ−1 log

[(
|Ω|
n

)
pτξ

]))
= exp

(
−ρ ·

(
Rn + 3 + D[τφ]

)
− ρc0

)
· p−1

τξ
·
(
|Ω|
n

)−1

.

Recall, for any k ≥ 0 and for any string w ∈ Σk,

M(wn|w1...n−1) =
∑d p(d) · #d(w1...n)

∑d p(d) · #d(w1...n−1)
, (36)

where, for the empty string ε, #d(ε) = |d|+ 2 by convention.16 Equation (36) is well-defined
because of Regularity Assumptions, 2, 4 and 5 in Section F.2, by which both the numerator and
the denominator are finite and non-zero. Then,

Mk(w1...k) :=
k

∏
n=1

M(wn|w1...n−1) =
N

∏
n=1

∑d p(d) · #d(w1...n)

∑d p(d) · #d(w1...n−1)
=

∑d p(d) · #d(w1...k)

2 + ∑d p(d) · |d| , (37)

where the last equality follows by cancellation of terms appearing in both the numerator and
the denominator. Recall that for m = 1, . . . , n, the prompt Pm(ξ) is given by

x1φ(x1)sx2φ(x2)s . . . sxm−1φ(xm−1)sxm, (38)

Then define Qm(ξ) as the prompt plus its correct completion:

x1φ(x1)s . . . sxmφ(xm)s ≡ Pmφ(xm)s (39)

16This convention is chosen so that ∑w∈Σ∪{$} M(w) = 1.

49

Now for any correctly completed prompt Qn(ξ) ∈ Ωk, by the definition of Mk (37),

Mk(Qn(ξ)) ≥
c1 pτξ

p(τ′ξ |START)
2 + E[|d|] (40)

≥c1 · exp
(
−ρ · (Rn + 3 + D[τφ])− ρc0

)
·
(
|Ω|
n

)−1

· 1
2 + E[|d|] . (41)

We have derived this bound for any sequence ξ.

Bounding ICL Error. We now use this to derive an error bound that holds on average across
all ξ. For the distribution µ over Σ∗ arising as the uniform measure on all correctly completed
prompts Qn(ξ):

µ :=
1

(|Ω|n)
∑

ξ :ξ1,...,ξn pairwise distinct
δQn(ξ) (42)

it holds, by rearranging (41), that

µk(Qn(ξ))

Mk(Qn(ξ))
≤c1 · exp(ρ · (Rn + 3 + D[τφ]) + ρc0) · (2 + E[|d|]). (43)

We will overload notation by writing µ(σ) for ∑σ′∈Σ∗ µ(σσ′) when |σ| < |Qn(ξ)|, and µ(σ′|σ) =
∑σ′′′∈Σ∗ µ(σσ′σ′′′)

∑σ′′∈Σ∗ µ(σσ′′) . We are now ready to bound the error made by the predictor on the prompts. The
expected summed cross-entropy loss on the in-context learning task satisfies (in the sums below,
we use the notation x1...n∈̃Ωn to denote the sum over all x1...n ∈ Ωn with pairwise distinct
entries) :

− 1

(|Ω|n)
∑

x1...n∈̃Ωn

n

∑
m=1

log M(φ(xm)s|Pm) (44)

=− 1

(|Ω|n)
∑

x1...n∈̃Ωn

n

∑
m=1

log M(φ(xm)s|Qm−1xm) (45)

=
1

(|Ω|n)
∑

x1...n∈̃Ωn

n

∑
m=1

log
µ(φ(xm)s|Qm−1xm)

M(φ(xm)s|Qm−1xm)
(46)

where we used the fact that µ(φ(xm)s|Qm−1xm) = 1. The goal is to bound this in terms of (43).
By the non-negativity of the KL-Divergence, we obtain

0 ≤
n

∑
m=1

∑
x1...m−1∈̃Ωm−1

µ(Qm−1)DKL(µ(·|Qm−1)||M(·|Qm−1))

=
n

∑
m=1

∑
x1...m∈̃Ωm

µ(Qm−1)µ(xm|Qm−1) log
µ(xm|Qm−1)

M(xm|Qm−1)

=
n

∑
m=1

∑
x1...n∈̃Ωn

µ(Pn) log
µ(xm|Qm−1)

M(xm|Qm−1)

=
1

(|Ω|n)
∑

x1...n∈̃Ωn

n

∑
m=1

log
µ(xm|Qm−1)

M(xm|Qm−1)

50

where both µ(·|Qm) and M(·|Qm) are distributions over the one symbol following Qm. Hence,
we can continue (using Equation (43)):

(46) ≤ 1

(|Ω|n)
∑

x1...n∈̃Ωn

n

∑
m=1

log
µ(xmφ(xm)s|Qm−1)

M(xmφ(xm)s|Qm−1)

=
1

(|Ω|n)
∑

x1...n∈̃Ωn

log
µ(Qn)

M|Qn|(Qn)

= ∑
σ∈Σ|Qn |

µk(σ) log
µ(σ)

M|Qn|(σ)

≤ρ · (Rn + 3 + D[τφ]) + ρc0 + log c1 + log (2 + E[|d|])

This expression is
O(Rn + D[τφ]) (47)

where the constants absorbed into O(·) depend on: ρ provided by Lemma 5 (depends on PCFG
production probabilities); c0, c1 > 0 provided by Regularity Assumption 5; log E[|d|] < ∞
provided by Regularity Assumption 6, and not otherwise on Y (and thus Ω). This then also
yields a bound on the zero-one error on completing the prompt:

1

(|Ω|n)
∑

x1...n∈̃Ωn

n

∑
m=1

1
φ(xm) 6=arg max

ω∈Σd M(ωs|Pm)

≤ 1

(|Ω|n)
∑

x1...n∈̃Ωn

n

∑
m=1

1M(φ(xm)s|Pm)≤ 1
2

=
1

log 2
1

(|Ω|n)
∑

x1...n∈̃Ωn

n

∑
m=1

log 2 · 1− log M(φ(xm)s|Pm)≥log 2

≤− 1
log 2

1

(|Ω|n)
∑

x1...n∈̃Ωn

n

∑
m=1

log M(φ(xm)s|Pm)

=
1

log 2
· (46)

=O(Rn + D[τφ])

F.5 Extension to Stochastic or Noisy Functions

Extension to the case where φ is stochastic or noisy has an entirely analogous proof, and only
requires some additional notation to formally define the relevant notions. Formally, we say
that a stochastic function φ : Ω×R → Ω∗ is expressed by a derivation tree τφ with description
length D[τφ] if, for all w ∈ Σ∗ and all x ∈ Ω, Prob(Y(τφ, 〈x〉, r) = w) equals Prob(φ(x, r) = w).
The optimal cross-entropy loss, for an oracle predictor that knows the task from the start, is
given by the entropy of outputs:

`opt =
1
|Ω|∑x

H[φ(x, r)] (48)

The learning bound will compare ICL loss to this optimal loss:

51

Theorem 7 (Regret Bound for Nondeterministic Functions). Let any CAG be given, satisfying the
regularity assumptions, and including the associated trees T , yield map Y , and predictive distribution
M, with the associated quantities Rn. Let φ : Ω×R → Ωd be a function expressed by a derivation tree
τφ ∈ T . Let ξ := x1, x2, ..., xn ∈ Ω (n ≤ |Ω|) be a sequence without replacement, and let s ∈ Σ. For
m = 1, . . . , n, consider the prompt Pm given by

x1φ(x1)sx2φ(x2)s . . . sxm−1φ(xm−1)sxm. (49)

with expected completion φ(xm). Assume predictions are made as

arg maxω∈Σd M(ωs|Pm). (50)

and cross-entropy loss is incurred as

− log M(φ(xm)s|Pm). (51)

On average across the choice of the sequence x1, x2, ..., xn, the summed cross-entropy loss on completing
P1, ..., Pn, is bounded by

n · `opt +O
(

Rn + D[τφ]
)

(52)

where O(·) absorbs constants depending on the PCFG, s, and the average document length E[|d|], but
not otherwise on |Ω|, φ, or n.

The proof is entirely analogous to that of Theorem 1. A bound on zero-one loss follows from
a bound on cross-entropy loss analogously to (47).

F.6 Necessity of Dependence on Rn

Here, we sketch (not fully formally) why the dependence of the bound (8) on Rn cannot in
general be avoided, by constructing a CAG with an “adversarial” production rule that mimics a
prompt in order to lead the predictor astray. We do not consider this adversarial production
rule linguistically realistic, but aim to show that the linear bound is tight in the absence of
further assumptions. Simultaneously, we point out that such an adversarial production rule
can only slow down, but not prevent ICL. The latter point is important because it shows why
the learning guarantee is stable under mixing other data into the pretraining distribution—ICL
capabilities obtained in a small CAG (like the one generating our COMPOSITIONAL dataset)
carry over to larger CAGs extending it, up to a change in the constants in Equation 8.

We consider a CAG with a production rule as described in Example 4 mapping a nonterminal
to a single nonterminal, and a corresponding yield Y(ψ[τ], 〈〉, r) of the form

Y(τ, 〈x1〉, r1) . . .Y(τ, 〈xn〉, rn) (53)

where any sequence of mutually different x1, ..., xn is chosen with probability

p(n) ·
(
|Ω|
n

)−1

:= A · n−q ·
(
|Ω|
n

)−1

. (54)

where A = (∑∞
n=1 n−q)−1; q > 2. We now add a second “adversarial” production rule ψ′ where

the yield of ψ′[τ] is
Y(τ, 〈x1〉, r1) . . .Y(τ, 〈xn−1〉, rn−1)xny (55)

52

where y is chosen from Ω at random. Again, each x1, ..., xn is chosen with probability (54). Both
ψ and ψ′ generate derivation trees whose root nonterminal is START, and they have the same
production probabilities. Now given a prompt:

Pn := x1φ(x1)s . . . xnφ(xn)sxn+1 (56)

by Example 4,

Rn ≤ 1− 1
ρ

log ∑
k≥n

p(n) = Θ(log n) (57)

and we obtain an error bound
O(log N) (58)

on completing prompts P1, . . . , PN from Theorem 1. Now we consider two derivation trees: τ1
applying the loop production rule ψ to the derivation tree τexample for which (as in Equation 30):

Y(τexample, 〈x〉, r) = xφ(x)s ∈ Σ∗ (59)

and τ2 applying instead the adversarial production rule. Now, for y 6= φ(xn+1),

∑
d

p(d|τ1) · #d(Pn) = ∑
d

p(d|τ2) · #d(Pn) =
∞

∑
k=n+1

p(k)(k− n)
(
|Ω|

n + 1

)−1

(60)

∑
d

p(d|τ1) · #d(Pny) =0 (61)

∑
d

p(d|τ2) · #d(Pny) =|Ω|−1
∞

∑
k=n+1

p(k)
(
|Ω|

n + 1

)−1

(62)

When n is large, the probability of the prompt context is dominated by τ1, τ2, because other
ways of generating such a string (e.g. through concatenation of independent strings) have

probability exponentially small in n, asymptotically smaller than (|Ω|n+1)
−1

. Hence,

∑
y 6=φ(xn+1)

M(y|Pn) = ∑
y 6=φ(xn+1)

∑d p(d) · #d(Pny)
∑d p(d) · #d(Pn)

&
∑∞

k=n+1 k−q(|Ω|n+1)
−1

2 ∑∞
k=n+1 k−q(k− n)(|Ω|n+1)

−1

∼n−q+1

n−q+2 =
1
n

and hence

−
N

∑
n=1

log M(φ(xn+1)|Pn) & −
N

∑
n=1

log
(

1− 1
n

)
≥

N

∑
n=1

n−1 ∼ log N

(the last inequality can be obtained from the Taylor series of log(1− x)), matching the upper
bound (58) up to constants.

We note that the presence of this adversarial production rule can only slow down ICL up
to the limit given by Theorem 1, but cannot make ICL impossible. Intuitively, this is because
even an adversarial production rule will inadvertently lend support to the correct prediction:
A correctly completed prompt Pnφ(xn+1) is a prefix of longer prompts Pn′ , and thus will occur
even in documents created using the adversarial production rule.

53

F.7 Broad ICL Skills Require Non-Context-Free Generative Process

Here, we describe informally why broad ICL learning guarantees for an idealized predictor
require going beyond context-free grammars as a formal model of the generative process
underlying the pretreaining distribution. It has long been noted that context-free grammars
are too restrictive to model the syntactic structure of language [e.g. Shieber, 1985, Joshi, 1985];
indeed, repetition-like operations eluding context-free grammars have figured in this context
[e.g. Steedman, 1990, Kallmeyer, 2010a]; see also Appendix H.3.

First, we note that iteration operations such as in Example 4 cannot be implemented in
a PCFG because that would enable a CFG to express languages such as the copy language,
{ww : w ∈ Σ∗}, known to be impossible. More generally, in a PCFG, the description length of a
derivation tree expressing repetition of a tree τ needs to grow with n ·D[τ]; hence, Rn ≡ +∞.

If the description of length of φτ is bounded, prompt-like structures can be hard-coded into
a PCFG, e.g., using production rules

A :== x f(x) s A
A :==

Such a simple CFG could generate pretraining data sufficient to enable ICL for the function f .
However, this only works when f is hard-coded into the PCFG in such a way, and ICL will fail
for other functions. To see why this is the case, it is sufficient to consider constant functions
φw : Ω→ Ωu such that φw(x) ≡ w ∈ Ωu. Given a prompt

Pm(x1...m; w) := x1wsx2ws . . . xm−1wsxm (63)

the reference answer, from the set {bs : b ∈ Σu} is ws. The possibility of ICL for an idealized
predictor would now mean that – for sufficiently large m depending on |w| – the CFG can
“copy” w from the prompt Pm(x1...m; w). However, for any fixed CFG, this must fail at least for
some sufficiently long w, essentially for the same reason as the non-context-freeness of the copy
language. 17

There is a second sense in which ICL guarantees such as Theorem 1 are not possible for
CFGs: A PCFG generating a pretraining dataset allowing ICL skills for a function f (such as
the hard-coded rules above) can always be extended with adversarial production rules that
prevent ICL in the idealized predictor for the extended distribution. In contrast, for general
CAGs, the learning guarantee from Theorem 1 holds even if extending the CAG with other,
possibly adversarial, production rules—intuitively, the guarantee is stable under mixing other
data into the pretraining distribution—such additional rules would only affect the constants in
Equation 8 (cf. Appendix F.6).

G Proof of Theorem 2

Proof of Theorem 2. We reduce the statement to an application of the proof of Theorem 1 to the
prompts

P(1)
n (q) = x1φ1(x1)q1s . . . xnφ1(xn)qnsxn+1 (64)

with expected completion φ1(xn+1), and

P(2)
n (q) = x1q1φ1(q1)s . . . xnqnφ1(qn)sxn+1qn+1 (65)

17This is seen most easily for the cross-entropy loss: If w is long, the LM’s cross-entropy on Pn (i.e., − log M(Pn))
scales with n|w|. Hence, the cross-entropy of the correct completion given Pm cannot converge to zero as m→ ∞.

54

with expected completion φ1(qn+1). On average over the sequences x (without replacement), q
(with replacement), we already have a bound of the desired form, using a variant of Theorem 1
using repetition of the derivation trees τ(1) and τ(2):

Y(τ(1), 〈x〉, r) = xφ1(x)qs ∈ Σ∗ (66)

and
Y(τ(2), 〈x〉, r) = xqφ1(q)s ∈ Σ∗ (67)

where q is uniformly distributed as r varies, as assured by the closure under MARGINALIZATION

(Section F.2); we use closure under CONCATENATION; x, q denote spellout operations τprojection
as assured by closure under PROJECTION; and s denotes τsymbol(s) as assumed by closure under
CONSTANTS. Substituting these for the tree τ (30) and analogously carrying out the remainder
of Section F.4 yields error bounds on completing (64) and (65) of the form O(Rn + D[τφ1]).

Now we notice that, keeping x and φ1 fixed, the distribution of (64) over q equals the
distribution of (9) over arbitrary functions φ2. An analogous statement holds for (65). This
proves the theorem.

H Linguistic Grammar Formalisms and Design Choices

Here, we discuss how our definition of CAGs fits into the landscape of grammar formalisms,
and how our theoretical results transfer to other formalisms. We intend CAGs not as a full-
fledged grammar formalism competing with existing proposals; rather, it aims to condense
key mathematical ideas and insights from the formal grammar literature while minimizing
notational burden: containing just enough material to formalize our theory of what learning
from next-word prediction on compositional data entails for ICL. We decided to go this route,
rather than committing to any individual formalism, both in order to avoid formalism-specific
notational burden, and to make transparent the general features necessary (and not necessary)
for proving our results. For this reason, we focus on mathematical links to grammar formalisms,
and leave the question of specific analyses of linguistic phenomena largely aside – those
questions are addressed in a substantive literature on formal grammar embedded in those
formalisms. This section only describes aspects of grammar formalisms as they are relevant to
our analysis; a very comprehensive technical survey is provided by Kallmeyer [2010b]. Müller
[2020] discusses and compares analyses of linguistic phenomena across different formalisms. A
short survey is provided by Jäger and Rogers [2012].

H.1 Role of Yield Function

Recall that CAGs consist of a PCFG backbone generating derivation trees, and a yield oper-
ator mapping those to strings. This architecture is extremely common across the grammar
formalisms literature, even if not always stated in these terms. The simplest case is that of a
context-free grammar, where the yield function has a particularly simple form: The yield of a
tree ψ[t1, . . . , tk] consisting of an application of the production rule ψ with children t1, . . . , tk is

Y(ψ[t1, . . . , tk]) = Y(t1) . . .Y(tk) (68)

It is well-established that context-free grammars are too restrictive for modeling the syntax of
natural language, even at the level of individual sentences [e.g. Shieber, 1985, Joshi, 1985]. This
is addressed by a range of grammar formalisms that relax the definition of Y . An extremely

55

general framework for formalizing this, into which many formalisms can be embedded, is the
Generalized Context Free Grammar (GCFG, [Pollard, 1984]), where each production rule ψ is
associated with some function fψ(x1, . . . , xk) and the yield is:

Y(ψ[t1, . . . , tk]) = fψ(Y(t1), . . . ,Y(tk)) (69)

The simple case where fψ denotes string concatenation recovers context-free grammars. Indeed,
GCFGs generalize in a second direction, by allowing Y to map to tuples of strings. This is
useful for modeling syntactic relationships between structures appearing in different places in a
sentence.

Grammar formalisms vary in what restrictions they place on Y – that is, what restrictions
they place on fψ. CAGs assume that Y always maps to strings, i.e., tuples of length 1 in
GCFG parlance. We do this for simplicity; nothing in our analysis depends on this. Another
assumption is more substantive: CAG follows many grammar formalisms in assuming that fψ

performs some kind of concatenation of the argument strings (in some order and multiplicity),
and cannot “look inside” the strings returned for the different children. Many formalisms also
limit the degree to which the yield function can repeat children; we take this up in Section H.3.

Some common formalisms, such as Minimalist Grammars (MGs), Tree-Adjoining Grammars
(TAG), or Combinatory Categorical Grammar (CCG), are not usually stated in terms of (69). MGs
are weakly equivalent to formalisms commonly described in such terms (see Appendix H.3).
TAG and CCG themselves are also described in terms of derivation trees but with an unbounded
number of node types, in fact, our analysis can be adapted to such settings directly without
passing through GCFG-based description (Appendix H.2). Finally, some formalisms (notably
HPSG [Pollard and Sag, 1994], and a variant of Minimalist grammars with feature percolation
[Kobele, 2005]) are Turing-complete, though only a subset similar to the other formalisms
discussed here will likely be used in linguistic analysis.

Grammar formalisms are mostly applied at the level of individual sentences, but language
models trained on large-scale text also learn and leverage relations across sentences within a
document; indeed, grammar formalisms can be extended to model discourse without substantial
changes to the mathematical formalisms [e.g. Kamp and Reyle, 1993, Ginzburg and Sag, 2001,
Ginzburg, 2012].

The Role of Attributes and Randomness Our definition of the yield function has two distinc-
tive features beyond the CFG and GCFG setting (69), i.e., the addition of attributes and of an
additional source of randomness:

Y(τ, 〈x1, . . . , xan〉, r) ∈ Σ∗, (70)

These have important ramifications for linguistic and theoretical analysis. The addition of
attributes to nonterminals, while not present in (69), is in fact standard in linguistic analyses. In
some approaches, such as Minimalism [Chomsky, 1992], LFG [Bresnan, 2000], HPSG [Pollard
and Sag, 1994], they are an integral aspect of the formalism; in others, such as TAG and
CCG, they may be added to make linguistic analyses more parsimonious. Attributes have
many linguistic uses. For example, in the domain of syntax, they might be used to establish
subject-verb agreement without blowing up the number of nonterminal categories. In our
setting, the more relevant use of attributes is in the syntax-semantics interface: In particular,
in order to model how forms are mapped to meanings, formal analyses typically assume that
the referents of different expressions in a sentence, and their relations among each other, are
propagated through the derivation tree. For instance, in HPSG [Pollard, 1984, Kim and Sells,
2008, Ginzburg and Sag, 2001] or Sign-Based Construction Grammar [Boas and Sag, 2012], each

56

node in a tree is associated with semantic attributes indexing to real-world referent(s), which
are propagated through the tree to establish semantic links between them. Similar approaches
can also be used to define syntax-semantics interfaces for other formalsism [e.g. Kallmeyer and
Romero, 2004, for TAG]. While we do not explicitly model meanings, they play a key role in
determining the distribution of strings found in a corpus, which will respect world knowledge.
While derivational generative theories of syntax such as Minimalism [Chomsky, 1992] focus on
modeling the set of grammatical sentences irrespective of world knowledge, a role of world
knowledge is naturally part of model-theoretic (constraint-based) theories such as HPSG, where
feature-based meaning representations – and constraints on them – are first class parts of the
grammar of a language. We formalize attributes or feature-value pairs in terms of a fixed-length
list of attributes; our results are robust to other choices, such as modeling them in terms of
feature-value pairs with some finite set of feature names.

As long as the set of possible attributes is finite – which is the case in CAGs – attributes
can be simply compiled out into a larger set of nonterminals and production rules. Analysis
of generative capacity – the primary cocnern of the theory of grammar formalisms–can thus
ignore attributes (as is done in Kallmeyer [2010b]). This explains why, despite the importance
of attributes to linguistic analysis, they do not figure in (69). For instance, in Minimalism,
nonterminal categories are thought of as feature bundles, but they may be compiled out into
atoms in formal description [Kallmeyer, 2010b, Section 6.2.2]. However, compiling attributes
into atomic nonterminals obfuscates generalizations and blows up the size of the grammar (in
the extreme case, when jointly modeling syntax and meaning, separate versions of a simple
S→ NP VP production rule for each combination of NP referents and verb meanings). Keeping
attributes in the formalization has the virtue of making compositional structure transparent and
allowing us to prove bounds in Theorems 1–2 that do not deteriorate as Ω increases, because
the PCFG component is separated from the universe.

The other addition concerns an additional source of randomness r which affects how
derivation trees are spelled out into strings. This again does not change the generative capacity
of our formalism, as it can be compiled out into a larger set of production rules. Our motivation
for including additional randomness is again to prevent blowup of the set of production rules.
For example, without additional nondeterminism in the Y function, a grammar would need
separate production rules whenever there are different ways of assigning attributes to the
children of a node (e.g., different possible referents for a noun phrase).

On a technical level, the use of attributes (or feature-value pairs) and additional nondeter-
minism permits us to decouple ICL bounds from the size of the world. Indeed, the constants
in the bounds do not change if we took the size of the world towards infinity and considered
arbitrarily long prompts; we consider this an attractive mathematical property. It would be ob-
scured by compiling out features and nondeterminism into more nonterminals and production
rules.

Application of Analysis to Grammar Formalisms Having discussed how CAGs relate to
linguistic grammar formalisms, we now discuss what is needed in order to apply our Theorems
1–2 to such formalisms:

1. The formalism should be stated in terms of a GCFG. The fact that GCFGs model the yield as
a tuple of strings does not impact the proofs of Theorems 1-2, beyond increasing notational
load. For extension to formalisms not stated in terms of a GCFG, see Appendix H.2.

2. The grammatical structure should be formalized in such a way that syntactic rules abstract
over attributes, and attributes are not compiled out into atomic nonterminals. As we
discussed above, this demand satisfied by typical formal linguistic analyses. Furthermore,

57

we expect the scope of a grammar to be a model of the full generative distribution over
sentences (or even documents), not just enumerating the grammatical sentences.

3. In order to obtain nontrivial ICL bound, the grammar must be able to describe repetition
of a single derivation tree. This is, indeed, a nontrivial condition on the grammar’s
generative power and requires going beyond context-free grammars (Appendix F.7). We
examine this further in Appendix H.3

H.2 Derivation Trees with Infinitely Many Node Types

In TAG and CCG, derivation trees may have infinite sets of node or arc labels, not strictly pro-
viding a CFG backbone. For example, in a CCG derivation, unboudnedly complex combinatory
types can appear (e.g., VP/(NP/VP)). Indeed, the only place where our analysis relies on the
finiteness of node labels and production rules is Proposition 5, bounding probability in terms of
description length. An amended definition of description length accounting for unboudneness –
measuring not only the number of nodes in a tree but also their complexity – is then sufficient
to recover our theory.

H.3 Repeating Structures in Grammar Formalisms

Key to obtaining a nontrivial ICL bound is the ability of the generative process to produce
repetition of a derivation tree. This is impossible in context-free grammars (Appendix F.7), but
becomes possible in more powerful linguistically adequate grammars.

Prime examples of repetition in language come from list-like enumerations (Figure 1A.4)
and from the “gapping” structure (Figure 1A.6). Repetition of derivation trees is fully possible
in Range Concatenation Grammars (RNG) [Boullier, 1999, 2000]. In many other formalisms,
repetition is restricted so that loop operations cannot be nested, or can only be nested subject
to further constraints. This is sufficient for proving ICL bounds as long as the function φ itself
does not contain loop operations, which is satisfied in our test tasks. Even if φ contained loop
operations, bounds can be proven using such formalisms if the nesting depth of loop operations
is bounded, which is likely to be the case given general limits on recursion in language [Karlsson,
2007, Blasi et al., 2019].

The formalism CNL-LMG [Kallmeyer, 2010a] specifically uses loop operations in order to
account for gapping and scrambling phenomena in natural language, but it restricts the ways
in which loop operations can be nested to maintain polynomial-time recognition.

Many formalisms do not allow duplication of the same subtree in the yield function (fψ in
Equation 69), which on first sight might exclude repetition. However, these formalisms nonethe-
less can simulate loops using other capabilities – and this is how gapping is analyzed in such
formalisms. In the remainder of the section, we illustrate how k-fold iteration with attributes
can be expressed in Minimalist Grammars (MGs) [Stabler, 1996], a popular formalisation of
common ideas in the linguistic syntax literature [Chomsky, 1992]. MGs are weakly equivalent
to a range of formalisms, including Multiple Context Free Grammars (MCFG) [Seki et al., 1991]
and linear context-free rewriting systems (LCFRS) [Vijay-Shanker et al., 1987], and belong to
the family of mildly-context sensitive language classes [Joshi, 1985, Vijay-Shanker and Weir, 1994,
Kallmeyer, 2010b], thought to be appropriate to describing the syntax of natural language;
going beyond the power of context-free languages but allowing polynomial-time recognition.
Computational implementations with probabilistic parameterizations include, inter alia, Hale
[2006] using MCFGs, Hunter and Dyer [2013], Portelance et al. [2017], Torr et al. [2019] for
MGs, Yang et al. [2022] for LCFRSs. Positive learnability results include Clark [2021]. They
are strictly subsumed by RCG and CNL-LMG, and in turn subsume Tree-Adjoining Grammar

58

(TAG) [Joshi, 1985] and Combinatory Categorical Grammar (CCG) [Steedman, 2001], two other
popular non-context-free grammar formalisms.

We show that any Minimalist Grammar can be extended to achieve a constant error bound
(independent of n) for all n ≤ |Ω| for any function φ expressible in the original grammar. This
is not exactly the same as Rk ≤ c because it only applies to functions φ that do not contain
iterations themselves. But it is sufficient for achieving such a bound for functions expressed by
trees τφ that do not contain loops themselves – which applies to all test tasks considered in this
paper. The above-mentioned CNL-LMG formalism strictly extends MGs by allowing nested
repetition of loop operations, subject to certain restrictions. In fact, Kallmeyer [2010a] argued
that this increased power is needed to account for gapping and scrambling in natural language;
such a formalism would naturally give rise to a constant error bound even for certain functions
including nested loops. In this section, we focus on the popular Minimalist Grammars.

To make the discussion self-contained, we introduce the definition, using the equivalent
Multiple Context Free Grammars (MCFG) formalism [Seki et al., 1991] for convenience (also
used by Hale [2006]); this was shown to be equivalent by Michaelis [1998, 2001]. Like CAGs,
MCFGs can be formulated in terms of GCFGs (Equation 69). As in general GCFGs, MCFG
derivation trees yield tuples of strings rather than strings (thus, the “M(ultiple)” in “MCFG”),
with length (“dimension”) deterined by the top nonterminal.

Definition 8 (Definition 6.1 in Kallmeyer [2010b]). A MCFG consists of (NT,T, F, P, S) such that:

1. NT is a finite set of non-terminals, and each A ∈ NT has an associated integer (“dimension”)
dim(A) ≥ 1, dim(A) ∈N.

2. T is a finite set of terminals

3. F is a finite set of mcf-functions: that is,

f : (T∗)d1 × ...× (T∗)dk → (T∗)d0 (71)

such that each component of the value of f is a concatenation of some constant strings and some
components of its attributes. Furthermore, each component of the RHS of a rule is not allowed to
appear in the value of f more than once.

4. P is a finite set of production rules of the form

ψ : A0 ⇒ fψ[A1, ..., Ak] (72)

with k ≥ 0, fψ ∈ F such that

fψ : (T∗)dim(A1) × ...× (T∗)dim(Ak) → (T∗)dim(A0) (73)

5. S ∈ N is the start symbol with dim(S) = 1

Derivation trees are defined as in CAGs. The yield operation is defined recursively as follows when
ψ ∈ P:

Y(φ[A1, ..., Ak]) = fφ(Y(A1)...Y(Ak)) (74)

This completes the definition.

Note that Kallmeyer [2010b] uses the term “yield” in a slightly different from our usage
here, using it to refer to a set of strings derivable from a nonterminal rather than the string
generated by an individual derivation tree.

59

The MCFG formalism does not explicitly have attributes, which would be compiled out into
atomic nonterminals; we thus simply assume that every (non)terminal in NT∪ T is associated
with a tuple of attributes, and that we can write production rules as:

ψ[ξ] : φ0(ξ)⇒ φ1(η1)...φk(ηk) (75)

where φ1, . . . , φk are independent of ξ, and η1, . . . , ηk are determined by ψ and ξ.
We assume that some MCFG is given; we establish that we can extend it so that any function

expressible using a derivation tree in the original MCFG can be iterated N-fold (where N can
go up to |Ω|) in the resulting MCFG. For notational simplicity, we assume that all nonterminals
in the orignal MCFG have dimension 1; extension to higher dimension is a matter of notation.
We add all nonterminals of the form

PARALLEL(φ; ω1, . . . , ωN) : φ ∈ NT, ωi distinct (76)

with dimension N, and of the form

REPEAT(φ) : φ ∈ NT (77)

with dimension 1. For production rules

ψ : φ0(ξ)⇒ φ1(η1)...φk(ηk) (78)

add a rule PARALLEL(ψ, N, ω1...N):

PARALLEL(φ0; ω1, . . . , ωN)⇒ fφ(PARALLEL(φ1; ω1, . . . , ωN)

. . .
PARALLEL(φk; ω1, . . . , ωN))

where fφ(x1...N
1 , ..., x1...N

k) = [x1
1 . . . x1

k , ..., xN
1 . . . xN

k]. Furthermore, add rules REPEAT(φ, ω1...N)

REPEAT(φ0)⇒ fφ(PARALLEL(φ0; ω1, . . . , ωN)) : φ ∈ NT, ωi distinct

where fφ([x1, ..., xN]) = x1...xN .
Then:

Theorem 9. If φ is definable in the original MCFG with D[τφ] nodes, and ω1, . . . , ωN ∈ Ω is some
sequence without replacement, then there is a tree τ′ in the extended MCFG such that

Y(τ′) = φ(ω1) . . . φ(ωN) (79)

with D[τφ] + 1 nodes.

Proof. Change any production rule in τφ into the corresponding PARALLEL production rule,
with the appropriate attributes for each of the N copies. Then apply a single REPEAT rule to
concatenate these N copies.

A difference between this resulting MG/MCFG and CAGs is that the MCFG needs to
compile the attributes into nonterminals, inflating the size of the grammar. This can be avoided
by separating attributes from nonterminals, as done in both CAGs and standard linguistic
analysis practice. As a result, a predictive model reflecting the extended MCFG enjoys ICL
bounds (provided by Theorems 1–2) for any function φ definable in the original MCFG.

60

<command> ::= PRINT <variable>
| IF <condition> THEN <block> ELSE <block> ENDIF
| LOOP OVER <variable> DO <block> ENDFOR
| FOR SOME <variable> SUCH THAT <condition> DO

<block> ENDFOR
<block> ::= <command> | <command> <command>

| <command> <command> <command> | ...
<condition> ::= <function>(<variable>) = <variable>
<variable> ::= x1 | x2 | x3 | ...
<function> ::= f1 | f2 | f3 | ...

Figure 22: Backus-Naur(-like) Grammar for document scripts.

loop

block

for y s.t. f1(x)=y

block

if f2(y)=x

print x print y

print x

block block

<x>

<x>

<x,y>

<x,y>

<x,y>

<x,y><x,y>

<x,y>

<x,y>

<>

loop over x do
for some y such that f1(x)=y do
 if f2(y)=x then
 print x
 else
 print y
 endif
 print x
endfor

endfor

Figure 23: Left: a document script (same as in Figure 2D). Right: a corresponding CAG deriva-
tion tree. Each node has a corresponding nonterminal in the CFG in Figure 22 (<command>
or <block>), and a list of attributes, which corresponds to the free variables available at that
point in the script.

61

I Details for Document Scripts

As programs, document scripts are defined by the Backus-Naur grammar in Figure 22. They can
simultaneously be interpreted as generated by a CAG: The free variables within a code block
correspond to attributes; translating to a PCFG with arity would proceed by creating separate
nonterminals for each arity up to the maximum number of free variables enforced by the
implementation. An example of this correspondence is provided in Figure 23. R1, R2, . . . , R10 =
1 is satisfied by the “for all” statement.

The production rules for the 〈function〉 nonterminal (Figure 22) depend on |F |; as a
consequence, our learning bounds will depend on |F |. On the other hand, the production rules
do not depend on Ω. Our theory thus correctly predicts that ICL accuracy decreases with |F |,
but not with |Ω|.

Because Σ = Ω, we do not require trees specifically representing constants that may not be
the names ω of objects ω, and thus do not need to satisfy closure under CONSTANTS (Section F.2).

Correspondence to CAG Here, we describe formally how a document script can be expressed
as a CAG derivation tree; this simultaneously precisely defines the semantics of document
scripts (see Figure 23 for an example). For each number k of free variables up to some limit
enforced by the implementation, we introduce nonterminals

1. ncommand,k

2. nblock,k

and, for each 1 ≤ i ≤ k, terminals

1. tprint,k,i

We set START := ncommand,0. Further, we create production rules:

1. Printing: ψprint,k,i := ncommand,k ⇒ tprint,k,i

2. Conditions: ψi f ,k, fs(ξi)=ξ j
: ncommand,k ⇒ tblock,ktblock,k for each equation of the form fs(ξi) =

ξ j, for 1 ≤ i, j ≤ k + 1; fs ∈ F .

3. Loop: ψloop,k : ncommand,k ⇒ tblock,k+1

4. For some: ψ f or some,k, fs(ξi)=ξ j
: ncommand,k ⇒ tblock,k+1

5. Block: ψblock,k,N : ncommand,k,N ⇒ tblock,k+1 . . . tblock,k+1 (N times, for each N > 0 up to some
limit enforced by the implementation)

We specify Y as follows:

1. Y(ψprint,k,i[τ], ξ, r) = ξi

2. Y(ψi f ,k, fs(ξi)=ξ j
[τ1, τ2], ξ, r) = Y(τ1, ξ, r1) if the condition is true, and the same with τ2 else.

3. Y(ψloop,k[τ], ξ, r) = Y(τ, 〈ω1, ξ1, ..., ξk〉r1) . . .Y(τ, 〈ωN , ξ1, ..., ξk〉rN) where the subset ω1, ..., ωN
is determined by r0, and N is fixed.

4. Y(ψ f or some,k, fs(ξi)=ξ j
[τ], ξ, r) = Y(τ, 〈ω, ξ1, . . . , ξk〉, r) where ω ∈ Ω is a random element

satisfying fs(ξi) = ξ j if ω is substituted for ξk+1; if none exist, the yield is the empty string.

5. Y(ψblock,k,N [τ1, . . . , τN], ξ, r) = Y(τ1, ξ, r1) . . .Y(τN , ξ, rN)

62

The regularity assumptions in Section F.2 are satisfied as follows; here, we make use of
the fact that f1 is the identity in our experiments. Closure under PROJECTION is satisfied by
tprint,k,i. Closure under CONCATENATION is satisfied by wrapping each of τ1, τ2 in an application
of ψ f or some,k, f1(ξ1)=ξ1

and then wrapping those inside an application ψblock,k,N . Closure under
MARGINALIZATION is satisfied by ψi f ,k, f1(ξ1)=ξ1

. We omit closure under CONSTANTS, which is
not necessary to prove Theorems 1–2 in our setup (because the separator is chosen from Ω); this
allows us to decouple the PCFG component of the CAG from Ω. The constants c0, c1 are small:
a derivation tree with zero free variables can directly generate a document, potentially after
wrapping in a command NT. Finally, expected document length is finite because production
rules for loops and blocks only create strings of bounded lengths, so that Y(τ, 〈〉, r) ≤ C ·D[τ]
for some C < ∞.

Sampling Document Scripts. Sampling from the grammar requires defining a distribution
over programs. We defined a simple power-law prior for the number of 〈command〉 productions
in a 〈block〉 (p(l) ∝ (1 + l)−4, 1 ≤ l ≤ 10). Second, as we do not have a-priori expectations
for production rules for the 〈command〉 nonterminal, we defined a hyperprior so that for each
document in the pretraining corpus, production probabilities were sampled individually before
generating the program. Thus, we avoided comitting to an arbitrary choice. We constrained
the production probabilities so that, for a given choice of probabilities, the expected document
length was ≤ 64, the LM’s context length. Up to normalization, the satisfying set of probability
vectors is approximately a half-space, which we precomputed. We computed this set separately
for each setting (varying F and Ω) to make the mean document length comparable across
settings (recall the our bounds contain constants depending on log E[|d|], but not |Ω|). Thus,
rather than a PCFG, we use a compound PCFG distribution [Kim et al., 2019, Zhao and Titov, 2020],
i.e., sample one set of production probabilities for each generated scripts from a larger space
of accepted PCFGs. This corresponds to sampling from a mixture of different PCFGs, which
we do to account for the fact that we have no a-priori knowledge of the “correct” production
probabilities. It does not affect the applicability of our learning bounds, as they hold for each of
the mixed PCFGs individiaully.

Variables. Production of 〈variable〉was constrained to variables bound by a ”LOOP OVER”
or ”FOR SOME” operator with scope over the variable. Production rules whose RHS required
more open variables than were contextually available were blocked. These constraints are
automatically enforced in the CAG translation.

Naively sampling syntactically correct scripts tends to produce bloated scripts with many
unused variables. We took the following steps to mitigate unused variables: With each produc-
tion, we associated a probability distribution over the currently open variables; this was mixed
with a uniform distribution at most productions, but with a Dirac distribution on the newly
introduced variable for variable-introducing operators. Arguments to an equation fs(xi) = xj
were sampled without replacement from the set of available variables.

These steps do not break the PCFG independence assumptions, as they could be compiled
out by splitting nonterminals and production rules.

Enforcing termination. We scale the probabilities of recursive rules with a negative power
of the depth, (depth)−2 (roughly based on the rate of recursion in natural language, Blasi et al.
[2019]), and then re-normalize the production probabilities, so that the production rules depend
on the depth. We do this for practical reasons: in order to enforce rapid termination of sampling
without (near-)infinite recursive calls, as we mix a large space of PCFG parameters and thus

63

could not tune these individually for rapid termination. This breaks the PCFG assumptions;
however, if anything, this choice should decrease the documents’ bias towards conmpositionality.

J HMM5 Training Datasets

The HMM5 dataset closely follows the GINC dataset by Xie et al. [2022]; here, we provide a
full definition to make the discussion self-contained. The generative process is a mixture of
five HMMs, whose state space is Ω×F (entities times properties), and whose transitions are
independent in the two components:

p(ωt+1, ft+1|ωt, ft) = p(ωt+1|ωt)p(ft+1| ft) (80)

For the five HMMs, there is a common transition matrix for the entity component; each HMM
has its own transition matrix for the property component θ ∈ R|F |×|F|.

A state (ω, f) emits the symbol f (ω); the corresponding property look-up table is termed
memory matrix in Xie et al. [2022].

Each property transition matrix θ is generated as a convex combination of Nperm :=
100 random permutation matrices; the weights of the convex combination are generated as
softmax((u− 0.5)/0.1) where u ∈ R100 is uniformly random in [0, 1].

The entity transition matrix is sampled by first obtaining a matrix T in the same way as the
property transition matrices, and then computing

0.1T + 0.9I|Ω|×|Ω| (81)

We take the start distribution for the hidden states in all HMMs to be uniform. For each
document, one of the five HMMs is chosen randomly. In line with the approximate length
distribution of compositional documents, document length was sampled from a Gaussian with
mean 50 and SD 10, clipped to [0, 128].

HMMPERDOC In the HMMPERDOC dataset, we created both the property and the entity
transition matrix individually for each document, and set Nperm = 1. In preliminary exper-
iments, we found that ICL was much less successful with Nperm = 10 or Nperm = 100. The
matrices were constrained so that either f2 or f3 was excluded from the transition dynamics. In
comparison to the HMM dataset, which mixes 5 HMMs, the resulting dataset reflects a mixture
of a much larger number of HMMs, up to |Ω|!|F − 1|!.

K Effect of |Ω|
As described in the main text, Theorem 1 provides a bound independent of |Ω|. Empirically,
we even observed improved accuracy on some tasks when increasing |Ω|. This can be explained
in terms of the experimental setup: When |Ω| is large, an equation such as y = f (x) (for fixed
x, y) is less likely to be satisfied by a more than one function of small description length, so that
prompts may be more distinctive. Heuristically, on average across functions f and prompts, the
probability that no other function f ′ with D[f ′] ≤ D[f] matches the prompt is on the order of(

1− 1
|Ω|N

)c|F |
∼ exp

(
− c|F |
|Ω|N

)
(82)

if N is fixed and |F |, Ω are large; this increases as |Ω| increases.

64

L Ablations

We created variants of the training data with (i) loops, (ii) variable introduction via “for some”,
(iii) conditions (if-then-else) ablated, and trained LMs with 21M parameters. When ablating
loops, we added a free variable that is set randomly, in order to introduce a variable.

See Figure 24.

M Additional Results

See Figures 25–28.

N Heldout Analysis

See Figure 29.

O GPT-3 Experiment

Prompt Format We used single newlines to separate input from label, and double newlines to
separate examples.

Sampled prompt (FUNCTIONEVALUATION, reversal):

i i x d h o y u v h\nh v u y o h d x i i
\n\n\n
n d b y p h z u h h\nh h u z h p y b d n
\n\n\n
m k e q m m j s g y\ny g s j m m q e k m
\n\n\n
u n j m u u m k t n\nn t k m u u m j n u
\n\n\n
j j z c v u t e a j

with reference answer

\nj a e t u v c z j j

As in our other experiments, only inputs x or x, y were included in prompts for which the
response z was unambiguous. We obtained results for ≈ 14 sampled prompts per task and
prompt length (with some variability due to compute availability).

65

FUNCTIONEVALUATION

● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●● ● ● ● ● ● ●

●

● ● ● ●●●●●●●●●●●●●

● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●● ● ● ● ● ● ●

●

● ● ● ●●●●●●●●●●●●●●●●

− Loop − Condition − ForSome Full

1 10 100 1000100001 10 100 1000100001 10 100 1000100001 10 100 100010000

PROPOSITIONAL

● ●
● ●

● ● ● ● ● ● ●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●● ● ● ●
●

● ●
●

●

● ● ●●●●●●●●●●●●●

● ● ●
●

●
● ●

● ●

●

●

●
●

●

●

●●

●●●
●●●

● ● ● ●

● ●

●

●
●

● ●

●

●

●●

●●●●●●●●

● ● ●

● ● ●

●

● ●

●

●●

●

●

●

●●●
●●●●●

● ● ● ●

●

●

●

●

●

● ●
●●●●●●●●●●●●

● ● ● ● ●

● ●
●

●

●

●

●●

●

●

●●●●●●●●

● ● ● ●
● ● ●

●

● ●

●●
●●●

●
●●●
●
●
●●

● ● ●

●

● ● ●

●

● ●

●

●●

●●

●
●●
●
●

●●●

● ● ● ● ●

● ● ●

●

●
●

●●

●

●

●●
●●

●

●●●

● ●
●

● ● ● ● ● ● ● ●●●●●●●●●●●●● ● ●
● ●

●

●

●
● ●

●●●●●

●

●●●
●●●● ● ●

● ●

● ●
● ● ● ●

●

●●
●

●

●
●●
●
●
●

● ● ● ● ● ●
● ● ● ●

●●●
●●●●●●●●

●

● ● ● ● ● ● ●
●

● ● ●●●
●●●

●●●
●
●●● ● ● ● ●

●

● ● ●

●
●●●

●●

●

●●

●●
●●● ● ● ● ● ● ● ● ● ●

●

●
●
●●●●●●●●●● ● ● ● ●

●
●

●
●

●

●●●●●
●
●●
●●●●● ● ●

●
● ● ● ● ● ● ●●●●

●
●

●

●
●
●
●

● ● ● ●
● ● ●

●

●

● ● ●●●●●●●●●●●●●●●

● ● ●
●

●

● ●

●
●

●
●

●

●
●●

●
●●●

●●
●●●●●

● ● ●
●

●
●

●

●
●

● ●●●
●

●●●
●
●
●●

●

●

● ● ●
●

● ●

●

● ● ●

●

●●

●
●●

●
●
●●
●
●●
●●●

● ● ● ●

●
●

●

● ●
●

●●
●●●

●
●
●
●●●●●●

● ● ● ● ●

● ●
●

● ●

●

●
●
●●

●●●●●●
●●●●

● ● ● ●
● ●

● ●
● ●

●
●●

●

●

●●
●●

●
●●

● ● ● ● ●
●

●

● ●

●

●●●
●
●●
●●
●●●
●●
●

● ● ●
●

●

●

●

● ●

● ●●●●
●

●

●

●●●
●
●●
●

●

● ● ● ● ●
● ●

●

●

●
●

●

●●

●●●●
●
●
●

●

●●
●●

− Loop − Condition − ForSome Full

1 10 100 1000100001 10 100 1000100001 10 100 1000100001 10 100 100010000

COMPOSED

● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●
● ● ● ●

● ● ● ● ● ● ●●
●
●
●●●●●

●●●●

● ● ● ●

● ● ●
●

● ●
●●

●

●

●

●●●●●

●●●

● ● ● ● ● ●
● ● ● ● ●●●●●●●●●●●●

● ●
●

● ● ● ●

● ● ●
●

●●●●
●
●●

●
●
●
●

● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●
●●●●●●

● ● ● ● ● ● ●
● ● ● ●

●●●●
●
●
●●●
●●●

●

− Loop − Condition − ForSome Full

1 10 100 1000100001 10 100 1000100001 10 100 1000100001 10 100 100010000

BINARY

● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●● ●
●

● ● ●
● ● ● ● ●●●●●●●●●●●●●●

●

● ●

●

●

● ●

●

●

●

●

●●●●
●●●

●

●

●

●●

● ● ●

●

●

●

●

●

●

●

●

●
●●●●

●
●●●●●

●

● ● ●

●

●

● ●

●
●

●

●

●

●●

●●●

●●
●●●●

● ● ●

●
●

●

●

●

●

●

●

●

●●
●●

●
●●
●●●

● ●
●

●
● ●

●

●

●

●

●

●

●●

●

●●●●●●●

● ●
●

●
●

●

● ● ●
●

●

●

●
●●●●

●●●●

●

● ●
●

● ●

●

●
●

●

●
●●

●●●●
●●
●
●
●
●●
●●
●

● ● ●

●
●

●

● ●
●

●
●●●

●●●
●
●
●●
●
●
●

●●●

● ● ●

●

●

●

● ●
●

●

●
●●●●●●●

●●●
●
●●●
●

− Loop − Condition − ForSome Full

1 10 100 1000100001 10 100 1000100001 10 100 1000100001 10 100 100010000

Figure 24: Ablating the three components of the minimal CAG (all at 21M parameters, 14
prompt examples). Ablating variable-introducing constructs (loops and “for some”) makes ICL
impossible. Ablating the condition construct (“if-then-else”) barely hurts ICL performance, if at
all.

66

All tasks by |Ω|

|Ω| = 30
●● ●● ●● ●● ●● ●

●●

●● ●● ●● ●●●●●●●●●●●●●●●●●●

1 10 100 1000 10000

● ● ●
● ●

●

●

● ● ● ● ●●●●●●●●●●

● ●
●

●

●

●
●

● ●

●

●
●

●
●●
●●
●●
●

● ● ●
●

●
●

●

●

●
●

●

●

●
●

●●
●
●
●
●●●●

● ● ●
●

●
●

●

●
●

●

● ●
●
●
●

●
●●
●
●●

● ● ● ●
●

●

●

●
● ●

● ●●●●●●●●●●●●●

● ● ●
●

●

●
●

●

●

●
● ●

●●●●
●
●

●
●●

● ●

●

●
●

●
●

●
●●●

●●
●●●●

● ● ●
● ●

●

●

●

●

●

●
●

●
●●●●

●

●

●
●
●●

● ● ●
●

● ●

●

●

●

● ●

●

●●

●
●

●

●
●
●
●
●
●

● ● ●
●

● ●
●

●

●

●
● ●

●

●

●●●●
●
●

●
●

●
●

1 10 100 1000 10000

● ● ● ● ● ●
● ●

● ●
●

●

●

●

●●●
●●●●●

● ●
●

●
●

● ● ●

●
●

●

●

●●
●

●

●
●
●

1 10 100 1000 10000

● ● ●

●

●

●

●
●

● ●
●

●

●
●
●●

●
●●
●
●
●

● ● ●
●

●

●

●

●

●
● ●

●●

●

●
●

●

●●

●

●

●

●

●

● ● ●
●

●

●

●

●

● ●

●
●

●●
●
●
●
●●●

●
●

●●

1 10 100 1000 10000

|Ω| = 100
● ● ● ● ● ● ●

● ● ● ● ●●●●●●●●●●●●

1 10 100 1000 10000

● ● ● ● ● ●
●

● ● ● ● ●●●●●●●●●●●●●

● ● ● ●
●

●

●

●

●

●
●

●
●
●
●
●
●●●●●

●●●

● ● ● ●
●

●

●

●
●

●
●

●
●
●
●
●
●●●

●
●
●

●

● ● ● ●
● ●

●

●

●

●

●
●

●
●
●
●

●
●
●
●●●●●

● ● ● ●
●

●

●

●
●

● ●●●
●
●●●●●●●●

● ● ● ●
●

●

●

●

●
● ●● ●●●●●●●●●●

● ●
● ●

●

●

● ●
●

●
●●●●●●●●●●●●

● ● ● ● ● ● ●

●

●

●
●

●●
●
●
●
●
●
●
●
●
●
●
●

● ● ● ● ● ● ●

●

●

●
●

●
●
●
●●

●
●
●
●●
●

● ● ●

●

●
●

●

●

●
●

●●

●●
●
●●
●●●

1 10 100 1000 10000

● ● ● ● ● ● ● ● ● ●

●

●●●●●●●●●●●●

● ●
● ● ●

● ●

●
●

●
●
●

●
●
●

●
●

●

●

●

●
●

1 10 100 1000 10000

● ● ●

●

●
●

●

●

●
●

●

●

●

●

●
●●●

●

●
●

●

● ● ●
● ●

●

●

●

●

●
●

●
●

●●
●●●●

●

●

● ●
●

● ●

●

●

●

● ●

●

●
●
●

●
●

●

●

●

●●
●●
●

1 10 100 1000 10000

|Ω| = 300
● ● ● ● ● ● ●

●

● ● ● ●●●●●●●●●●●●●●●

1 10 100 1000 10000

● ● ● ● ● ● ●

●

● ● ● ●●●●●●●●●●●●●●

● ● ● ●
● ●

●

●

●

●
● ●

●

●
●●

●
●
●
●●
●●●●

●

● ● ● ● ● ●

●

●

●

●

● ●
●
●●

●
●●●

●
●●●●●

● ● ● ● ● ●

●

●

●
●

● ●

●

●
●

●
●
●●●●

●
●
●●●

● ● ● ● ●

●

●

● ●
● ●

●
●
●●●

●●●●
●●●●●

● ● ● ● ●

●

●

●

●
● ●

●
●●●●●●●●●●●●●

● ● ● ● ●

●

●

●

●
●

●
●
●
●●●●●

●
●
●
●
●●●

● ● ● ● ● ●
●

●

●

●
●

●
●
●
●
●

●
●●
●

●
●●●

●
●

● ● ● ● ● ● ●

●

●

●
● ●

●●●
●
●
●

●

●●●
●
●●

● ● ● ● ● ● ●

●

●

● ●
●●

●
●
●●

●
●
●●●●●●

1 10 100 1000 10000

● ● ● ● ● ● ● ● ●
●

●

●

●●●●●●●●●●●●●

● ● ● ● ● ● ● ●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●
●

1 10 100 1000 10000

● ● ● ● ●
●

●

●
●

● ●

●
●

●
●
●●

●●
●

●
●

●

●
●

● ●
●

● ●

●

●

●

●

●

● ●●

●

●

●
●●
●
●

●
●●●
●

● ● ● ● ●

●

●
●

●

●
●

●●
●
●●

●
●
●

●

●
●●
●
●

1 10 100 1000 10000

Figure 25: Additional results by |Ω|.

All tasks by |F |

|F | = 10
●● ●● ●● ●● ●● ●

●●

●● ●● ●● ●●●●●●●●●●●●●●●●●●

1 10 100 1000 10000

● ● ●
● ●

●

●

● ● ● ● ●●●●●●●●●●

● ●
●

●

●

●
●

● ●

●

●
●

●
●●
●●
●●
●

● ● ●
●

●
●

●

●

●
●

●

●

●
●

●●
●
●
●
●●●●

● ● ●
●

●
●

●

●
●

●

● ●
●
●
●

●
●●
●
●●

● ● ● ●
●

●

●

●
● ●

● ●●●●●●●●●●●●●

● ● ●
●

●

●
●

●

●

●
● ●

●●●●
●
●

●
●●

● ●

●

●
●

●
●

●
●●●

●●
●●●●

● ● ●
● ●

●

●

●

●

●

●
●

●
●●●●

●

●

●
●
●●

● ● ●
●

● ●

●

●

●

● ●

●

●●

●
●

●

●
●
●
●
●
●

● ● ●
●

● ●
●

●

●

●
● ●

●

●

●●●●
●
●

●
●

●
●

1 10 100 1000 10000

● ● ● ● ● ●
● ●

● ●
●

●

●

●

●●●
●●●●●

● ●
●

●
●

● ● ●

●
●

●

●

●●
●

●

●
●
●

1 10 100 1000 10000

● ● ●

●

●

●

●
●

● ●
●

●

●
●
●●

●
●●
●
●
●

● ● ●
●

●

●

●

●

●
● ●

●●

●

●
●

●

●●

●

●

●

●

●

● ● ●
●

●

●

●

●

● ●

●
●

●●
●
●
●
●●●

●
●

●●

1 10 100 1000 10000

|F | = 20
● ● ● ● ● ●

●

●

● ● ● ●●●●●●●●●●●●●

1 10 100 1000 10000

● ● ●
● ● ● ●

●

● ● ● ●●●●●●●●●●●●●

● ● ●
●

●
● ●

●

●

● ●

●
●

●●
●

●
●●
●●
●●●

● ●
●

●
● ●

●

●
●

●

●

●

●
●●

●
●
●

●
●
●
●
●
●

● ● ●
● ● ● ●

●

●

●

●

●
●

●
●●

●

●
●●
●
●
●
●

● ● ● ●
●

●
●

●
●

● ●
●

●
●●●

●
●
●
●
●●●●

● ● ●
●

●
● ●

●

●

●

●

●
●●

●●●●●●●●●●

● ● ● ●
●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●
●●●

● ● ●
●

●
● ●

●

●
●

●
●

●●
●
●
●

●
●

●
●
●
●●

● ● ● ● ● ●
●

●

●

●

●
●

●

●

●

●
●
●

●

●
●
●
●
●

● ● ●
●

●
●

●
●

●

●
●

●

●●

●

●

●

●●
●
●
●
●
●

1 10 100 1000 10000

● ● ●
● ● ● ● ● ● ●

● ●●●●●
●●
●
●●●●

●

● ● ●
● ●

● ●
● ●

● ●

●

●

●
●
●

●
●
●●●

●
●
●

1 10 100 1000 10000

●

●
●

●
● ●

●

●

●

●

●
●

●●
●

●
●

●
●
●
●
●
●●

● ● ●

●
●

●

●
●

●

●
● ●

●
●●●

●
●
●
●

●

●
●
●

● ●
●

●
●

●

●
●

●

●
●

●
●
●

●
●

●
●
●
●●
●
●
●

1 10 100 1000 10000

|F | = 30
● ● ● ● ● ● ● ●

● ● ● ●●●●●●●●●●●●●●●●

1 10 100 1000 10000

● ● ● ● ● ● ● ●

●
● ● ●●●●●●●●●●●●●●●●

● ● ● ●
●

●
●

●

●
● ●

●

●
●
●
●●

●

●
●
●●
●●
●●●

● ● ●
●

● ●
●

●

●

●
●

●

●
●
●
●

●
●

●
●

●
●
●
●●●●

● ● ● ●
● ● ●

●

●

●
●

●●
●

●
●

●
●

●
●
●
●●
●●●●

● ● ● ●
● ●

●
●

● ● ● ●
●●

●
●
●●
●●●

●
●●●●●

● ● ● ●
●

●
●

●

● ●
●

●

●

●
●

●
●●●●●

●
●
●●●●

● ● ●
● ●

●
● ●

● ● ●

●
●

●

●
●

●●
●
●
●
●
●●●●●

● ● ●
●

●
●

●
● ●

●

●
●

●

●

●

●

●
●
●
●●
●
●

●
●●●

● ● ● ●
●

●
●

●

●
●

●
●

●

●

●

●

●
●
●
●
●
●

●●●●●

● ● ● ●
● ●

●
●

●
●

●
●

●●

●
●
●●
●●
●

●●●●●●

1 10 100 1000 10000

● ●
●

● ● ● ● ● ● ● ●
●●●●●●●●●●●●●●●●

● ● ●
● ●

●
●

●
● ●

●
●

●
●

●

●

●●
●

●

●
●●●●●●

1 10 100 1000 10000

● ●
●

●

●

●
● ●

●

●

●
●

●
●
●

●
●
●
●
●

●
●●
●●
●
●

●
●

●

●
●

● ●

●

●

●
●

●
●
●
●●

●

●

●
●

●
●

●

●
●
●
●

● ●
●

●
●

●
● ●

●

●

●

●

●●●●
●
●●

●

●
●
●●●●●

1 10 100 1000 10000

Figure 26: Additional results, by |F |.

67

All tasks by Prompt Length
|Ω| = 30, |F | = 10, 85M parameters

●●●●●●●●●●●

●

●

●
● ●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●●● ●●●●●
●●

●●

●●●●●●●●●●●●●●●●●●

●● ●●●●●●●●

●●

●●●●●●●●●●●●●●●●●

●● ●●●● ●●

●
●

●●●●●●●●●●●●●●●●●

●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

2 4 6 8 10 12 14

1 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 100100010000

● ● ● ●
●

●

● ●
●
●●

●●●●●●●●

● ● ●
●

● ● ● ●
●●●●

●

●●
●●●●●

● ● ● ● ●
●

●

●

●

●

●
●

●●●
●●
●

● ●

●
●

● ●
●

●
●●
●●

● ● ●

● ● ●
●●

●●
●
●●●●

● ● ●
●

●

●
●

●●●●●
●
●●

●

●
●

●
● ●●

●●●
●
●
●●●

● ●
●

●
●

● ●●
●●

●
●●

●

● ●
●
●
●

●
●●●●● ● ● ●

●

●●

●
●
●●

● ● ●
● ●

●

● ● ●●●●●●●●●●●●

● ● ●
● ● ●

●
●

●
●

●

●●●
●

●

●
●●
●
●
●

● ● ●

●

●
●

● ●

●●
●●●

●●●

● ● ●

●

●●●●
●
●
●

● ●

●

●

● ●
●●●

●●
●●●●

● ●
●

●

●

●
●

●

●
●●●

●

●
●●●

● ● ● ●
● ●

●

●

●●
●●

●
●●●

●

● ● ● ●
● ●

● ●
● ●●●

●
●
●
●●●

●

●

●
●

●●
●
●
●
●
●
●
●●

● ●
●

●
●
●●

●●
●●●

● ● ● ● ●

●

●
● ● ●●●●●●●●●●●●

● ● ●
●

●
●

●

●
●

●
●●
●●

●

●

●●●

● ● ●

●

● ●
●

●

●●
●●●
●●

● ●
● ● ●

●

●

●
● ●

● ● ● ● ●

●

●

●
● ●

●
●●●●●●●

●

●

●

●
●

●●
●
●●
●●●●●●

● ●

●

●

●
●

●
●●

●●
●●

●

●

●

●
●
●
●

●●
●●●

●

● ●
●

●●

●

●
●●●

●
●

●

●

● ●●
●

●
●●●

●
●●

● ● ●
● ● ●

●

● ● ● ●●●●●●●●●●●●●

● ●

●
●

●
●

●
●

● ●

●●●
●
●
●
●●●●●

●

● ● ●
●

●

●
●●

●●●
●
●●●●

●
●

●

●
●

●

●

●
●
●
●●●

● ● ● ●

●

●
●●●●●●

● ●
●

●
●

●

●

●

●
●●●

●●●●●

● ● ●
●

●

●
●●

●●●●●●
●●

● ●
●

●

●●●

●

●
●
●
●
●
●●●

● ● ●

●

●

●

●
●●
●
●●●

● ●

●
●

●
●

●●●●
●●●

● ●
● ● ●

●

● ● ●●●●●●●●●●●

● ● ● ● ●
● ●

● ●

● ●

●●
●
●
●
●

●●●●●

● ●

●
●

●

●●●●●●●
●

● ●
●

●

●

●

●
●
●●
●
●●●●●

● ● ●

●

●
●

●
●●●●●●●●●●●●

● ● ●
● ●

●

●

●

● ●●●●●●●●●

●
●

●
●

● ●
●
●●

●●
●●●

● ● ●
● ●

●

●●
●
●

●●●

● ● ●
● ●

●

●

●

● ●
●●●●●●●

● ● ● ●

●

●
●

●
●
●

●

●●
●
●●●

● ●
● ● ●

●

● ● ● ●●●●●●●●●●

● ● ● ●
●

●

●
●

●
●

●
●●

●●

●
●
●●●●●

●
●

●

● ●

●
●●●

●
●●

● ●
● ●

●
●

●

●●●●
●●●●

● ● ● ● ●

●

●

●
●

●
●●●

●●●●●●

● ● ● ●
● ●

●

●
●

●
●●

●●●

● ●
●

●

●

●
●

●
●
●●
●●●●●●●●

● ●

●

●●
●
●
●●●●

●●

● ● ● ● ●

● ●

●

●●
●

●
●●
●●

● ●
●

●
●

●

●

●

●
●
●
●●

●●

● ● ●
● ● ●

●

● ● ● ●●●●●●●●●●●

● ● ● ●

●

●
●

●●

●
●●
●●●●●●●●

● ● ●
● ●

●

●

●

● ●

●
●
●
●
●●●

●
●●●●●

● ● ● ●
● ●

●

● ●

●

●●●
●
●
●●●
●
●●

● ● ● ● ●

●

●

● ● ●
●●●●●●●●●●●●●●

● ● ● ●
●

●
●

●

●
●

●●●●●●●●●●●

● ●

●

●
●

● ●
●
●●●●●●●●●

● ● ● ● ● ●

●

●
●

●
●

●
●
●●●●

●
●
●●●●

● ● ●
● ● ●

●

●
●

●●

●

●●
●●
●
●●●
●●●

● ● ● ● ● ● ●

●

●

●
●●

●

●

●●●●●
●
●
●
●●

2 4 6 8 10 12 14

1 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 100100010000

● ● ● ● ● ● ● ●●●●
●●●●

●●●●● ●
●

● ●
●

●
●
●●●●● ● ● ● ● ● ● ● ● ● ●

●
●
●
●●
●
●●●

●
● ●

●
●●●

●
●

● ● ● ● ● ● ● ● ● ●●

●

●

●●
●
●●●

●
●

●
●

● ● ●
●

●●●●
●●

● ● ●
● ●

●●

●

●

●●
●
●●
●●●

● ● ●

●●●●●
●●●

●

● ● ● ● ● ● ●
●●

●

●

●●
●
●●●●●●

● ●
●

●

●
●
●
●

●

● ● ● ●
● ●

● ● ●
●

●

●

●●●
●●●●●●

● ● ●

●●●●●
●●
●●

● ● ● ● ● ● ● ●
● ● ●

●

●

●

●●●●●●
●●

● ● ● ● ● ● ● ●

●●
●

●

●●●

●
●●●

2 4 6 8 10 12 14

1 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 100100010000

● ●
●

● ● ● ● ● ● ●●●●●
●
●●●●●

● ● ● ● ● ●
● ●

● ●●●●●●●
●
●●●●
●

● ● ● ● ● ● ● ● ●●●●●●●●
●●
●
● ● ● ● ● ●

● ●

●

● ● ●

●

●●●

●

●●
●

● ● ●
●

●

●

●

● ●●
●

●
●●
●●
●
●●
●

● ● ● ● ●
●

●
● ●

●

●
●
●
●
●
●
●●●
● ●

●
●

● ●

●
●

●
●●

●●
●

●●
●

●●

● ● ● ● ●

●
● ●

●
●●

●

●

●

●
●●
●

●

●
●●

● ●
●

● ●

●

●

●

●●

●
●

●

●●●
●●

● ● ●
●

●

●

● ●

●
● ●

●●●●
●●
●●
●
●●

●
●

● ●

● ●

●

●

●
●●

●
●
●
●

●

●
●●
●
●●

● ●
●

●
● ●

●
● ● ●●●

●

●

●●
●
●
●
●

● ●

●
●

● ●

●●●
●

●●
●●

●

●
●●●

● ● ●

●
●

●

● ●
●●●●

●

●

●●●●●

● ● ●
●

●

●

● ●
●

●
●●●

●
●

●

●
●

● ●
● ●

●
●

●
● ●

●
●
●
●
●

●
●●●

●

●
● ● ● ●

●

●

● ● ●●●

●

●
●
●●

● ● ● ● ●

●

●

●
● ● ●

●●●●●

●

●

●
●
●●●

● ● ●

●

●

●

●
●

● ● ●●
●
●
●●
●●●●●●

● ● ●
●

●
●

●

●

● ● ●●●
●
●●
●
●●
●

●
●
●
●

● ● ●
●

●
●

●

●
● ●

●
●●

●●
●●
●●●●●

●●

2 4 6 8 10 12 14

1 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 100100010000

Figure 27: Additional results.

All tasks by Prompt Length
|Ω| = 300, |F | = 10, 85M parameters

● ● ● ● ● ●

●

● ● ●●●●●●●

● ● ● ● ● ●

●

● ● ●●●●●●

● ● ● ● ●

●

● ● ●●●●●●●●●

● ● ● ● ●

●● ●●●●●●●●

● ● ● ● ● ●

●

● ●●●●●●●●●●

● ● ● ● ● ●

●

● ● ●●●●●●●●

● ● ● ● ● ● ●

●

● ● ●●●●●●●●●●●●●●●●

2 4 6 8 10 12 14

1 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 100100010000

● ● ● ●

●

● ●●●●●●●●●

● ● ● ● ●

●
●

●
●
●●●

●●
●
●●

● ● ● ● ●

●

●

●
●●●●

●
●

● ● ● ●

●

●
●

●
●●●

●
●
●●

● ● ●
●

●

● ●●
●
●●

●

● ● ● ● ● ●

●

●

● ●
●
●
●●●●

● ● ●

●

●

●●
●
●●
●●●
●

●

● ● ●

● ●●●●●●●●

● ●
●

●

●
●

●
●

●
●
●
●●●
●●

● ● ● ● ● ● ●

●
●●●●●

●

● ● ● ● ● ●

●

● ● ●●●●●●●●●●

● ● ● ● ●

●

●

●●●●●●●●●

● ● ● ●

●
●

●●
●●●●●

● ● ● ●

●

●
●●

● ●

● ●

●
● ●●●●●●

● ●

●

●

● ●●●●●●●
●●

● ● ● ●

●

●

● ●
●●●●

●
●●●

● ● ● ● ● ●

●
●

● ●●●

●●●

● ● ● ●
●

●

●
●●●

● ● ● ●

● ● ●●
●
●
●

● ● ● ● ● ●

● ●●●●●●●●

● ●

●

●
●●●●●●●

●●●●

● ● ●

●
●

●
●

● ●●●●●●

● ● ● ●

●

●
●

●●
●
●●

●

● ● ● ● ●

●

● ●●
●
●●●●●●

● ● ●

●

● ● ●
●●●●●●

● ● ●
●

●

●
● ●●●

●
●●●●

● ● ●

●

●

●
●●●

●
●●●●

●
●
●

● ● ●
●

●

● ●
●
●
●
●●

● ● ● ● ●

●
●

●●●●
●●●

● ● ● ● ●

●

● ● ●●●●●●●●

● ● ● ● ● ●

●

●

● ● ●●
●●●●

●●●●

● ● ● ●

●

●
●●●●●●

● ●

●

●●●●

● ● ● ●

●

●●●●●●
●
●

● ● ●

●

● ● ●●●●●

● ●

● ●●●●●●●●●

● ●

●●●

● ●
●

●

●
●

●
●●

●
●

● ●
●

●

● ● ●
●
●

● ● ● ● ● ● ●

●

● ● ●●●●●●●

● ● ● ● ●

●

●

● ●

●●●●●●●●●●●

● ● ● ●

●

● ●

●
●

● ●●●
●
●●

● ●

●
●

●
●●

●●
●
●

● ● ● ●

●

●
● ● ●●●●●

● ● ● ● ●

●
●

●
●●●●●●

● ● ● ●

●

●
●

●●
●
●●●

● ● ●

●

● ● ●●●●●
●

● ● ●
●

●

●●
●
●●

● ● ● ●
●

●

●●
●

●●●●
●
●●

● ● ● ● ●

●

●●●●●●●●

● ● ● ● ●

●

●

●
● ●●

●
●●●

●
●●

● ● ● ● ●

●

●
●

●
●

●
●●●●●

● ● ● ● ●

●●●
●●●●

● ● ●

●●●●●●●●●●

● ● ●

●

● ● ● ●●●●●●●●

● ● ● ●

●

●
● ●●●●●

● ● ● ●
●

●

●●●
●
●
●

● ● ● ● ●

●

●
●

●●●●●●●

● ● ● ●

●

●●

● ● ● ● ● ● ●

●

● ● ●●●●●●●●●●●●●●●

● ● ● ● ● ●

●

●

●
● ●●

●
●●●●●

●●●●●●●●

● ● ● ● ● ●

●

●

●
●

●●●
●●●●●●●●●●●●

● ● ● ● ● ●

●

●

●
●

●●

●
●
●
●●●●●●●

●●●●

● ● ● ● ●

●

●

● ● ●●●●●●●●●●●●●●●●

● ● ● ● ●

●

●

●
● ●●●●●●●●●●●●●●●●

● ● ● ● ●

●

●

●

● ●●●
●●●●●●●●●

●●●●

● ● ● ● ● ● ●

●

●
● ●●●●●

●
●●●●

●●●●
●
●

● ● ● ● ● ● ●

●

●

●
●●●●●●●

●
●
●●●●●●

● ● ● ● ● ● ●

●

●
● ●●●

●●●●●●
●●●●●●

2 4 6 8 10 12 14

1 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 100100010000

● ● ● ● ● ● ● ●

●

●

●●●
●

●●

● ● ● ● ● ● ●
●●●●●●

●
● ● ● ● ● ● ● ● ●

●

●

●
●●
●●●●●

● ● ● ● ● ●

●
●

●●●●
●

●
●

●

● ● ● ● ● ● ●

●

●●●●●●

● ● ● ● ●

●

●
●

●●●

● ● ● ● ● ● ● ●

●

●

●●●●●●●●●

● ● ● ●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

●

●
●●●●●

● ● ● ● ● ●

●
●

●

●

●
●

●●

●

●

● ● ● ● ● ● ● ● ●

●●●●●●●●
●●●

● ●
●

● ●
●

●
●
●
●●

●

● ● ● ● ● ● ● ● ● ●

●

●

●●●●●●●●●●●●●

● ● ● ● ● ● ● ●

●
●●

●
●

●
●●
●
●

●

●

●
●

●●

2 4 6 8 10 12 14

1 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 100100010000

● ● ● ● ● ● ● ●
●

●●

●●
●●
●●● ● ● ● ● ● ● ●

● ●
●●●●●●●●●●● ● ● ● ● ● ● ● ●●●

●
●
●●●●● ● ● ● ● ●

●

●
● ●

●
●●●●

●
●
●

●
●●
●●

● ● ● ●

●

●
●

●

●●
●

●
●

●
●
●

● ● ●

● ●
●

●
●

●
●

●
●
●
●

● ● ● ● ●

●

●

●

●

●
●
●
●●●●

● ●
●

●

●
●

●●●

●●

●
●●

●

● ● ● ●

●

●
● ●

●

●

●●
●

●

● ● ● ● ●

●

●

●●

●
●
●
●

●
●
●

● ● ● ● ● ●

●
●

●●

●
●

●
●
●
●
●
●

● ● ●
●

●
●

●
● ●

●●●●●●

● ● ● ● ●

●

●

● ●
● ●●

●●●
●●
●
●

● ● ● ●
●

●

● ●
●

●●

●
●
●
●

●

● ● ●

●

●

● ●
●●

●

●●
●●●

● ● ● ●
●

●

●
● ●●

●

●●
●
●
●

● ● ● ● ●

● ● ●
● ●●●●

●●●
●

● ● ● ● ●

●
●

●
●●

●

●
●
●●

● ● ● ● ● ●

●

● ●

● ●

●
●
●●
●●
●●●
●●
●

●●

● ●
●

● ●
●

●

●
●

●
●●●

●

●

●●●●●
●●●●
●

● ● ● ● ●

●

●
●

●
● ●

●●
●
●●
●
●●
●

●
●●●
●

2 4 6 8 10 12 14

1 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 1001000100001 10 100100010000

Figure 28: Additional results.

68

● ● ● ● ● ●

●

● ● ● ●●●●●●●●●●●●●●●●

● ● ● ● ● ●
●

● ● ● ●●●●●●●●●●●●●●●●

● ● ● ● ●
● ●

●
● ●

●

●

●●●
●●●●●

●●●

● ● ● ● ● ●
● ● ●

●

●

●●●●●●●●●●●●●●●

● ● ● ●
●

●

●
● ●

● ●●
●
●●

●
●
●
●●●

●●●

● ● ●
● ● ●

●
● ●

●
●

●●
●
●

●
●●
●●●

●●●●●

● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●
●●

●

● ● ● ● ● ● ● ● ● ● ●●●
●●

●●●●●●●●
●●●

● ● ● ● ● ●
●

●
● ● ●●●●●●●●●●●●●●

● ● ● ● ● ●
●

●

● ● ●●●●●●●●●●●●●●●●

● ● ● ● ● ●

● ● ●
●●●

●
●●
●●●●

● ● ● ● ● ● ●
● ●

● ●
●●

●
●

●●●●●●●
●●●●

● ● ● ● ● ● ●
●

●
● ●●

●●

●●●●
●●
●●
●●

● ● ● ● ● ● ●
● ●

● ●

●●●●

●
●●●●●

●
●●●●

● ● ●

● ●

●
● ● ●

● ●●●●●●●●●
●●●●

●●●

● ● ●
● ●

●

●
● ●

●
●●●●●●●●●●●●●●●●

● ● ● ●
●

● ●

● ●
● ●

●
●
●●

●●●●
●●
●●●●●

● ● ●
● ●

●
●

● ●

● ●

●●●
●

●
●●
●●●●

●●●●

● ● ● ●
●

●

●
●

●
● ●●●●

●
●●●

●●●
●
●

● ● ● ●
● ●

●
● ● ● ●●

●●●
●●●

●●●●●●●●

● ● ● ● ● ●
●

● ●

●
●●●●

●●
●●
●●●●●●

● ● ● ● ● ●

●

● ●

●
●

●●●●
●●●

●●
●●●
●●●

● ● ●
● ●

●
●

●
●

● ●●
●
●●●

●●●●●●●●●●

● ● ●
● ●

●

●

● ●
● ●●●●●●●●●

●●●●●●●

● ● ● ●
● ●

●

● ● ● ●●●●●●●●●●●●●

● ● ● ●
● ●

●

● ● ●
●●●●●●●●●●●●●●●●

● ● ● ●
● ●

●

● ● ●
●

●●
●●●

●
●●
●●
●●
●●●

● ● ● ●
● ●

●

● ●
● ●●

●●●●●
●●●●●●●●●

● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●

● ● ●

●
●

●
● ● ● ●

●●●●●
●●●

●●●●●●
●

● ●
●

● ●

●
●

● ●
●

●●●●●●●●●
●●●●●●●

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

1 10 100 1000 100001 10 100 1000 100001 10 100 1000 100001 10 100 1000 10000

Removed ● ●FALSE TRUE

Figure 29: Accuracies on the test tasks (21M parameters; prompt length 14) after pretraining
on the full dataset (red) or pretraining on a version of the same dataset where all documents
containing a substring matching a valid prompt for any of the test tasks were removed (blue).
Tasks are numbered as in Appendix A.

69

	1 A Formal Learnability Bound for Learning from Demonstrations
	1.1 Setup
	1.2 Learnability Bound
	1.3 Chain-of-Thought Prompting
	1.4 Comparison to DBLP:conf/iclr/XieRL022

	2 Experiments
	2.1 Training Datasets
	2.2 Training Setup
	2.3 Test Tasks
	2.4 Results
	2.5 Representation learning supports ICL

	3 Discussion and Related Work
	4 Conclusion
	A Task Definitions
	B Example Documents
	B.1 Example 1
	B.2 Example 2
	B.3 Example 3
	B.4 Example 4: Representability of Test Tasks

	C Training Details
	D Stability to World
	E Attention Maps
	F Proof of Theorem 1
	F.1 Formal Definition of Compositional Attribute Grammars
	F.1.1 A Standard PCFG Generating Derivation Trees
	F.1.2 A yield operation mapping derivations to strings

	F.2 Regularity Assumptions
	F.3 Preparatory Lemmas
	F.4 Proof of Theorem 1
	F.5 Extension to Stochastic or Noisy Functions
	F.6 Necessity of Dependence on Rn
	F.7 Broad ICL Skills Require Non-Context-Free Generative Process

	G Proof of Theorem 2
	H Linguistic Grammar Formalisms and Design Choices
	H.1 Role of Yield Function
	H.2 Derivation Trees with Infinitely Many Node Types
	H.3 Repeating Structures in Grammar Formalisms

	I Details for Document Scripts
	J HMM5 Training Datasets
	K Effect of ||
	L Ablations
	M Additional Results
	N Heldout Analysis
	O GPT-3 Experiment

