
110    COMMUNICATIONS OF THE ACM   |   JANUARY 2024  |   VOL.  67  |   NO.  1

research

I
M

A
G

E
 B

Y
 D

I
G

I
T

A
L

 A
B

S
T

R
A

C
T

 A
R

T

 key insights
	˽ Shortcut learning is a major reason 

behind the lack of robustness in large 
language models (LLMs), which rely 
heavily on spurious correlations and 
non-generalized shortcuts in the 
training data rather than learning 
robust features for prediction.

	˽ Shortcut learning is attributed to 
multiple factors, including biased 
training datasets, properties of the 
LLMs like model size, and the model 
training procedures like empirical risk 
minimization.

	˽ Several methods have been proposed 
to mitigate shortcut learning, such as 
data debiasing, adversarial training, 
explanation regularization, and 
confidence regularization. However, 
existing methods have had limited 
success and there is a need for better 
understanding and solutions.

NATURAL LANGUAGE UNDERSTANDING (NLU) is a 
subfield of artificial intelligence that requires 
computer software to comprehend input in the form 
of sentences. Representative NLU tasks include 
natural language inference (NLI), question answering 
(QA), and reading comprehension, among others. 
Furthermore, NLU has several real-world applications, 
including Alexa, Siri, and Google Assistant.

The major characteristic of NLU tasks is they are 
difficult and typically require world knowledge and 
commonsense reasoning. Recently, large language 
models (LLMs), such as BERT,8 RoBERTa,19 T5,29 
GPT-3,4 have been reported to achieve state-of-the-art 
performance in a series of high-level NLU tasks. 

The LLM performance has reportedly 
been significantly higher than human 
performance. However, the superior 
performance has only been observed 
in the benchmark test data that has the 
same distribution as the training set. 
Recent studies indicate these LLMs are 
not robust and the models do not re-
main predictive when the distribution 
of inputs changes.9,23,44 Specifically, 
these LLMs have low-generalization 
performance when applied to out-of-
distribution (OOD) test data and are 
also vulnerable to various types of ad-
versarial attack. This leaves us wonder-
ing: Why are these LLMs not robust? 
Have these LLMs mastered the high-
level semantic understanding and rea-
soning we expect of them?

A major reason for the low robust-
ness of LLMs is shortcut learning. The 
shortcut learning behavior has also 
been called other names in the litera-
ture, such as learning bias, superficial 
correlations, right for wrong reasons, 
and Clever Hans effect.a The shortcut 
learning behavior has been observed 
for a series of NLU tasks. For example, 
recent empirical analysis indicates 
the performance of BERT-like mod-

a	 The eponymous horse appeared to be capable 
of performing simple intellectual tasks, but re-
lied on involuntary cues given by its handler.
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els for the NLI task could be mainly 
explained by relying on spurious sta-
tistical cues such as unigrams ‘not,’ 
‘do’, ‘is’ and bigrams ‘will not’ (see 
Figure 1b).12,23 Similarly, for the read-
ing comprehension task, the models 
rely on the lexical matching of words 
between the question and the original 
passage, while ignoring the designed 
reading comprehension task.16 The 
current standard approach to train-
ing LLM is to use empirical risk mini-
mization (ERM) on NLU datasets that 
typically contain various types of arti-
facts and biases. As such, LLMs have 
learned to rely on dataset artifacts and 
biases and capture their spurious cor-
relations with certain class labels as 
shortcuts for prediction. The shortcut 
learning behavior has significantly 
affected the robustness of LLMs (see 
Figure 1a), thus attracting increasing 
attention from the NLP community to 
address this problem.

In this work, we offer a compre-
hensive review of the shortcut learn-
ing problem in language models with 
a focus on medium-sized LLMs those 
typically having less than a billion pa-
rameters. The main emphasis is on the 
prevalent pre-training and fine-tuning 
paradigm utilized in NLU tasks.  We 
cover the concept of shortcut learning 
and robustness challenges, detection 
approaches, characterization of the 
corresponding reasons, and mitiga-
tion approaches. We also provide a 
further discussion of future research 
directions and briefly discuss the chal-

lenges of shortcut learning posed by 
the prompt-based paradigm, espe-
cially regarding the massive language 
models which possess over a billion 
parameters, such as GPT-3 and T5.

Shortcut Learning Phenomena
Features captured by the model can be 
broadly categorized as useless features, 
robust features, and non-robust fea-
tures (see Figure 2). Shortcut learning 
refers to the phenomenon that LLMs 
(especially those trained with standard 
ERM-based method) highly rely on non-
robust features as shortcuts, failing to 
learn robust features and capture high-
level semantic understanding and rea-
soning. Non-robust features do help 
generalization for development and 
test sets that share the same distribu-
tion with training data. However, they 
cannot generalize to OOD test sets and 
are vulnerable to adversarial attacks. 
Non-robust features are oriented from 
biases in the training data and come in 
different formats. Here, we introduce 
several representative ones.

	˲ Lexical bias: Some lexical features 
have a high correlation of cooccur-
rence with certain class labels. These 
lexical features mainly consist of low-
level functional words such as stop 
words, numbers, and negation words. 
A typical example is the NLI task, 
where LLMs are highly dependent on 
unintended lexical features to make 
predictions.9,23 For example, these 
models tend to give contradiction pre-
dictions whenever negation words ex-

ist in the input samples, for example, 
‘never,’ ‘no.’

	˲ Overlap bias: It occurs in NLU ap-
plications with two branches of text, 
for example, natural language infer-
ence, question answering, and reading 
comprehension. LLMs use the overlap 
of features between the two branches 
of inputs as spurious correlations as 
shortcuts. For example, reading com-
prehension models use the overlap 
between the passage and the question 
pair for prediction rather than solv-
ing the underlying task.16 Similarly, 
question-answering models excel at 
test sets by relying on the heuristics of 
question and context overlap.33

	˲ Position bias: The distribution of 
the answer positions may be highly 
skewed in the training set for some 
applications. The LLMs would predict 
answers based on spurious positional 
cues. Take the question answering 
task for example, the answers lie only 
in the kth sentence of each passage.15 
As a result, question answering mod-
els rely on this spurious cue when pre-
dicting answers.

	˲ Style bias: The text style is a kind of 
pattern that is independent of seman-
tics. Models have learned to rely on the 
erroneous text style as a shortcut rather 
than capturing the underlying seman-
tics. Adversaries can use this style bias 
to launch adversarial attacks.28

Generalization and robustness 
challenge. The shortcut learning be-
havior could significantly hurt LLMs’ 
OOD generalization as well as adversar-

Figure 1. Shortcut learning behavior and its negative impact, taking natural language inference (NLI) task for example.

(a) Human performance

IID performance

OOD performance

(b) entailment
(0.55) [CLS] how can you prove it [SEP] can you tell me how to prove it ? [SEP]

contradiction
(0.97) [CLS] fun for adults and children . [SEP] fun for only children . [SEP]

neutral
(0.74) [CLS] were they in there ? [SEP] were they supposed to be in there ? [SEP]

entailment
(0.91)

[CLS] how do we fix this ?  ̍ [SEP] can we fix this ? [SEP]

contradiction
(0.96) [CLS] you know and held over for trial [SEP] released and no trial . [SEP]

The goal of NLI is to infer whether the relationship between two branches of input—premise and hypothesis— 
is entailment, contradiction, or neutral. (a) LLMs outperforms human performance for IID benchmark test 
set, while achieve much lower generalization performance on OOD test set. (b) A key reason is that LLMs 
primarily rely on the lexical bias and other kinds of shortcuts for prediction.
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task for example, the HANS evaluation 
set is proposed to evaluate whether 
NLI models have syntactic heuristics: 
the lexical overlap heuristic, the sub-
sequence heuristic, and the constitu-
ent heuristic.20 Similarly, for the fact 
verification task, a symmetric test set 
is constructed that shares a philosophy 
like HANS.32 These OOD tests have re-
vealed dramatic performance degrada-
tion and exposed the shortcut learning 
problem of state-of-the-art LLMs.

Second, adversarial attacks could 
also be implemented to test the ro-
bustness of LLMs. For example, adver-
sarial attacks have been used to reveal 
statistical bias in machine reading 
comprehension models.16 Besides, the 
adversarial examples created through 
TextFooler14 are used to test the gener-
alization of commonsense reasoning 
models.3 The results indicate the mod-
els have learned non-robust features 
and fail to generalize toward the main 
tasks associated with the datasets.

Third, randomization ablation 
methods are proposed to analyze 
whether LLMs have used these essential 
factors to achieve effective language un-
derstanding. For example, word order is 
a representative one among these sig-
nificant factors. Recent ablation results 
indicate that word order does not mat-

Figure 3. The pretraining then fine-tuning training paradigm.

ial robustness. First, shortcut learning 
may result in significant performance 
degradation for OOD data. A common 
assumption is that training and test 
data are independently and identi-
cally distributed (IID). When LLMs 
are deployed in real-world applica-
tions with distribution shifts, this IID 
assumption will not hold any longer. 
This data typically does not contain 
the same types of bias and artifacts as 
the training data.

​​
IID :  ​P​ train​​(X, Y )

 
= ​P​ test​​(X, Y)

​  
OOD : ​P​ train​​(X, Y )

 
≠

 
​P​ test​​(X, Y)

​​   (1)

Using BERT-base as an example, 
there is a more than 20% reduction 
in accuracy on the OOD test set com-
pared to the accuracy on the in-dis-
tribution test sets for NLU tasks.10 
To some extent, these models have 
solved the dataset rather than the un-
derlying task. Second, shortcut learn-
ing produces models that are easily 
fooled by adversarial samples, which 
are generated when small and often 
imperceptible human-crafted per-
turbations are added to the normal 
input. One typical example is for the 
multiple-choice reading comprehen-
sion task.37 BERT models are attacked 
by adding distracting information, re-
sulting in a significant performance 
drop. Further analysis indicates these 
models are highly driven by superfi-
cial patterns, which inevitably leads 
to their adversarial vulnerability.

Shortcut Learning Detection
Here, we discuss methods to identify 
shortcut learning problems in NLU 
models.

Comprehensive performance test-
ing. Traditional evaluations employ 
IID training-test split of data. The test 
sets are drawn from the same distribu-
tion as the training sets and thus share 
the same kind of biases as the train-
ing data. Models that simply rely on 
memorizing superficial patterns could 
perform acceptably on the IID test set. 
This type of evaluation has failed to 
identify the shortcut learning problem. 
Therefore, it is desirable to perform 
more comprehensive tests beyond the 
traditional IID testing.

First, the OOD generalization test 
has been proposed as an alternative 
to the IID test. Take the multi-genre 
natural language inference (MNLI) 

Figure 2. Features can be generally grouped into useless features, robust features, and 
non-robust features.

ter for pretrained language models.38 
LLMs are pretrained first on sentences 
with randomly shuffled word order and 
then fine-tuned on various downstream 
tasks. The results show these models 
still achieve high accuracy. Similarly, 
another study26 has observed that LLMs 
are insensitive to word order in a wide 
set of tasks, including the entire GLUE 
benchmark. These experiments indi-
cate that LLMs have ignored the syntax 
when performing downstream tasks, 
and their success can almost be ex-
plained by their ability to model higher-
order word co-occurrence statistics.

Explainability analysis. Model ex-
plainability is another effective tool 
the community has used to identify 
the shortcut learning problem. LLMs 
are usually considered black boxes, 
as their decision-making process is 
opaque and difficult for humans to 
understand. This presents challenges 
in identifying whether these models 
make decisions based on justified 
reasons or on superficial patterns. Ex-
plainability enables us to diagnose 
spurious patterns captured by LLMs.

The existing literature mainly em-
ploys the explanation in the format of 
feature attribution to analyze short-
cut learning behavior in NLU mod-
els.9 Feature attribution is the most 

Useless features Robust featuresNon-robust features

OOD and adversarial robustnessIID generalization

Lexical bias
Overlapping bias

Position bias
Style bias

among others

Semantic 
understanding 
and reasoning

Non-robust features indicate various kinds of biases captured by the model, which 
are not robust in the OOD setting. In contrast, robust features denote features of 
high-level semantic understanding that are robust to changes in the input.

Large scale
Text corpus

Task
Model 

Supervised
Fine-Tuning

Unsupervised
Pretraining Pretrained

Language Models
Downstream

Datasets

Shortcut learning can be attributed to different factors in this pipeline, including pretrained 
language models, fine-tuning process, and downstream tasks.
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Skewed training dataset. From a 
data standpoint, the NLU models’ 
shortcut learning can be traced back to 
the annotation and collection artifacts 
of the training data. Here, the training 
data includes both the pre-training da-
tasets as well as the downstream datas-
ets (see Figure 3). Training sets are typi-
cally built through the crowd-sourcing 
process, which has the advantage of 
being low-cost and scalable. However, 
the crowd-sourcing process results in 
collection artifacts, where the train-
ing data is imbalanced with respect to 
features and class labels. Furthermore, 
when crowd workers author parts of 
the samples, they produce certain pat-
terns of artifacts, that is, annotation ar-
tifacts.12 Taking NLI as an example, the 
average sentence length of the hypoth-
esis branch is shorter for the entail-
ment category compared to the neutral 
category.12 This suggests that crowd 
workers tend to remove words from 
the premise to create a hypothesis for 
the entailment category, leading to the 
overlap bias in the training data. Mod-
els trained on the skewed datasets will 
capture these artifacts and even ampli-
fy them during inference time.

LLMs models. The robustness of 
NLU models is highly relevant to the 
pre-fine-tuned language models. There 
are two key factors: model sizes (mea-
sured by the number of parameters) 
and pre-training objectives.

First, models with the same kind of 
architectures and pre-training objec-
tive but with different sizes could have 
significantly different generalization 
ability. It is shown that increasing the 
size of the model could lead to an in-
crease in the representation power 
and generalization ability. From the 
empirical perspective, comparisons 
have been made between LLMs of 
different sizes but with the same ar-
chitecture, for example, BERT-base 
with BERT-large, RoBERTa-base with 
RoBERTa-large.2,43 The results show 
the larger versions generalize consis-
tently better than the base versions, 
with a relatively smaller accuracy gap 
between the OOD and IID test data. 
Smaller models have fewer param-
eters than larger models and have a 
smaller model capacity. Therefore, 
smaller models are more prone to 
capture spurious patterns and are 
more dependent on data artifacts for 

representative paradigm among all 
explainability-based methods. For 
each token xi within a specific input 
x, the feature attribution algorithm ψ 
will calculate the contribution score 
ψi, which denotes the contribution 
score of that token for model pre-
diction. For example, the Integrated 
Gradient41 interpretation method is 
used to analyze the model behavior 
of BERT-based models.9 It is observed 
that LLMs rely on dataset artifacts and 
biases within the hypothesis sentence 
for prediction, including functional 
words and negation words, among 
others.9 This shortcut learning behav-
ior is summarized further using the 
long-tailed phenomenon. Specifical-
ly, the tokens in the training set could 
be modeled using a long-tailed distri-
bution. The LLM models concentrate 
mainly on information on the head 
of the distribution, which typically 
corresponds to non-generalizable 
shortcut tokens. In contrast, the tail 
of the distribution is poorly learned, 
although it contains abundant infor-
mation for an NLU task.

Beyond feature attribution, other 
types of explainability methods have 
also been used to analyze shortcut 
learning behaviors. For example, in-
stance attribution methods have been 
used to explain model prediction by 
identifying influential training data, 
which can be used to explain decision 
making logic for the current sample 
of interest.13 Empirical analysis indi-
cates the most influential training data 
share similar artifacts, for example, 
high overlap between the premise and 
hypothesis for the NLI task. Further-
more, hybrid methods that combine 
feature attribution and instance attri-
bution have also been used to identify 
artifacts in the data.25 The resulting ex-
planations have provided a more com-
prehensive perspective on the shortcut 
learning behavior of LLMs.

Origins of Shortcut Learning
The problem of learning shortcuts in 
LLM models for NLU tasks is a result of 
multiple factors present in the training 
pipeline (see Figure 3). In this section, 
we will delve into these reasons and 
give particular emphasis to three key 
elements: the training datasets, the 
LLM model, and the fine-tuning train-
ing procedure.

The problem of 
learning shortcuts 
in LLM models for 
natural language 
understanding 
tasks is a result of 
multiple factors 
present in the 
training pipeline. 
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augmentation, mix-up data augmenta-
tion, and syntactically informative ex-
ample augmentation by applying syn-
tactic transformations to sentences.

However, a drawback of this ap-
proach is that refining the dataset can 
only mitigate a limited number of rec-
ognized biases. The refined training 
set may not be completely free of bias-
es and may still encompass statistical 
biases that are challenging for humans 
to identify. Thus, this could still nega-
tively impact the model’s performance.

Training samples reweighting. The 
main idea of reweighting is to place 
higher training weights on hard train-
ing samples, and vice versa.32,44 It is 
also called worst-group loss minimi-
zation in some literature. The under-
lying assumption is that improving 
the performance of the worst group 
(hard samples) is beneficial to the ro-
bustness of the model. It is typically 
achieved through two-stage training. 
In the first stage, the weight indexing 
model is trained; and in the second 
stage, the predictions of the indexing 
model are used as weights to adjust 
the importance of a training instance. 
Both soft weights44 and hard weights 
could be used in the second stage. An-
other representative example is focal 
loss, which is based on a regularizer to 
assign higher weights to hard samples 
that have less confident predictions.

Partitioning data into environments. 
This line of methods follows the prin-
ciple of invariant risk minimization,1 
which encourages models to learn 
invariants in multiple environments. 
For example, training data has been 
partitioned into several non-IID sub-
sets (that is, training environments), 
where spurious correlations vary 
across environments and reliable ones 
remain stable across environments.42 
The training scheme is designed to 
encourage the model to rely on stable 
correlations and suppress spurious 
correlations. Another work proposes 
an inter-environment matching objec-
tive by maximizing the inner product 
between gradients from different envi-
ronments, with the goal of increasing 
model generalization.35

Model-centric mitigation methods, 
also known as named robust learn-
ing methods, typically augment the 
traditional ERM-based training para-
digm with different degrees of prior 

For example, reading comprehension 
models have learned the shortcut in 
the first few training iterations, which 
has influenced further exploration 
of the models for more robust fea-
tures.16 Third, it has been experimen-
tally validated that longer fine-tuning 
could lead to better generalization. 
Specifically, a larger number of train-
ing epochs will dramatically improve 
the generalizability of LLMs in NLU 
tasks.43 The preference for non-robust 
features can be explained from the fol-
lowing perspective: The present LLM 
training methods can be considered as 
data-driven, corpus-based, statistical, 
and machine-learning approaches. 
It is postulated that while this data-
driven paradigm may prove effective 
in certain NLP tasks, it falls short in 
relevance to the challenging NLU tasks 
that necessitate a deeper understand-
ing of natural language.

Mitigation of Shortcut Learning
Here, we introduce approaches that al-
leviate the problem of shortcut learn-
ing. The goal is to improve OOD gen-
eralization and adversarial robustness 
while still exhibiting good predictive 
performance in IID datasets. These 
methods are motivated mainly by the 
insights obtained in the last section.

Data-centric mitigation approach-
es. Dataset refinement falls into the 
pre-processing mitigation family, 
with the aim of alleviating biases in 
the training datasets. First, when con-
structing new datasets, crowd workers 
will receive additional instructions to 
discourage the use of words that are 
highly indicative of annotation arti-
facts. Second, debiased datasets can 
also be developed by filtering out bias 
in existing data. For example, adver-
sarial filtering is used to build a large-
scale dataset for the NLI task to reduce 
annotation artifacts that can be eas-
ily detected by a committee of strong 
baseline methods.51 As a result, mod-
els trained on this dataset must learn 
more generalizable features and rely 
on common sense reasoning to suc-
ceed. Third, we can also reorganize the 
train and test split, so the bias distri-
bution in the test set is different from 
that in the training set. Lastly, various 
types of data augmentation methods 
have been proposed. Representative 
examples include counterfactual data 

prediction. Another work10 studies the 
impact of model compression on the 
generalizability of LLMs and finds that 
compressed LLMs are significantly 
less robust compared to their uncom-
pressed counterparts. Compressed 
models with knowledge distillation 
have also been shown to be more vul-
nerable to adversarial attacks. From 
a theoretical perspective, a recent 
analysis supports there is a trade-off 
between the size of a model and its ro-
bustness, where large models tend to 
be more robust than smaller ones.5

Second, LLMs with similar model 
sizes but with different pretraining ob-
jectives also differ in the generalization 
ability. Here, we consider three kinds of 
LLMs: BERT, ELECTRA, and RoBERTa. 
BERT is trained with masked language 
modeling and next-sentence predic-
tion. RoBERTa removes the next-sen-
tence prediction from BERT and uses 
dynamic masking. ELECTRA is trained 
to distinguish between real input to-
kens and fake input tokens generated 
by another network. Empirical analy-
sis shows these three models have 
significantly different levels of robust-
ness.27 For the Adversarial NLI (ANLI) 
dataset, it is shown that ELECTRA and 
RoBERTa have significantly better per-
formance than BERT, for both the base 
and the large versions. Similarly, an-
other study has shown that RoBERTa-
base outperforms BERT-base around 
20% in terms of accuracy on the HANS 
test set.2 Because different architec-
tures have distinct object functions 
during the pre-training stage, different 
inductive biases may be encoded by the 
models. This could possibly explain 
their differences in generalizability.

Model fine-tuning process. The 
learning dynamics could reveal what 
knowledge has been learned during 
model training. There are some obser-
vations. First, standard training pro-
cedures have a bias toward learning 
simple features, which we can refer to 
as the simplicity bias. The models are 
based mainly on the simplest features 
and remain invariant to complex pre-
dictive features. Moreover, it has been 
observed that the models give over-
confident predictions for easy samples 
and low-confidence predictions for 
hard samples. Second, models tend 
to learn non-robust and easy-to-learn 
features at the early stage of training. 
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In the first stage, the biased teacher 
model is trained using standard ERM 
loss, and the bias degree obtained 
from the bias-only model will be used 
to rescale the output distribution of 
the teacher model. In the second stage, 
the smoothed confidence values of the 
teacher model can be used to guide the 
training of the debiased model.9

Contrastive learning. Contrastive 
learning can be used to guide the train-
ing of representations. The goal is to 
construct the instance discrimination 
task to guide the model to capture the 
robust and predictive features, while 
suppressing the undesirable non-robust 
features. The instance discrimination 
task should be carefully designed, or it 
is possible to suppress robust predictive 
features.31 A representative work pres-
ents a framework for mitigating spuri-
ous correlations using contrastive learn-
ing.6 The method synthesizes a pair of 
factual and counterfactual inputs from 
the original text by masking identified 
causal and non-causal terms respec-
tively. The model learns to associate the 
causal term with task labels by compar-
ing the original text with its counter-
factual counterpart, while learning to 
ignore non-causal features by contrast-
ing with the factual pair. The framework 
leads to models that are less dependent 
on non-robust features and exhibit im-
proved generalization performance.

IID and robustness trade-off? An-
other open question is about the con-
nection between IID performance and 
OOD robustness performance. To the 
best of our knowledge, there are no 
consistent observations. For example, 
there is a linear correlation between 
IID performance and OOD generaliza-
tion for different types of models in-
troduced previously. On the contrary, 
most robust learning methods will 
sacrifice IID performance, although 
some of them could preserve IID per-
formance. It deserves further research 
on the conditions under which the 
trade-off would occur. These insights 
could help the research community 
design robust learning frameworks 
that can simultaneously improve OOD 
and IID performance.

Future Research Directions
Despite the progress described in this 
article, there are still numerous re-
search challenges. Here, we discuss po-

cial patterns. For the NLI task, natural 
language explanations have been used 
to supervise the models, to encourage 
the model to pay more attention to the 
words present in the explanations.39 It 
has significantly improved the mod-
els’ OOD generalization performance. 
Note that this type of method can 
only be used when prior knowledge is 
known in advance about shortcuts.

Product-of-expert (PoE). The goal 
is to train a debiased model by train-
ing it as an ensemble with a bias-only 
model.7 This paradigm usually con-
tains two stages. In the first stage, a 
bias-only model is explicitly trained to 
capture the bias of the dataset, for ex-
ample, the hypothesis-only bias for the 
NLI task. During the second stage, the 
debiased model will be trained using 
cross-entropy loss, by combining its 
output with the output of the bias-only 
model: ​​​   p​​ i​​ = softmax (log  ( ​p​ i​​ ) + log  (​b​ i​​ ) )​. 
The parameters of the bias-only model 
is fixed during this stage, and only the 
debiased model parameters are up-
dated by backpropagation. The goal 
is to encourage the debiased model to 
utilize orthogonal information with in-
formation from the bias-only model to 
make predictions.

Confidence regularization. This miti-
gation scheme regularizes confidence 
in the model output, with the aim of 
encouraging the debiased model to 
give a higher uncertainty (lower confi-
dence) for these biased samples. It is 
based on the observation that models 
tend to make overconfident predic-
tions on biased examples. This relies 
on the training of a bias-only model 
to quantify the degree of bias of each 
training sample. The debiasing pro-
cess is typically achieved through the 
knowledge distillation framework. 

knowledge, explicitly or implicitly 
suppressing the model from captur-
ing non-robust features. Some mitiga-
tion methods require the shortcuts be 
known a priori, while others assume 
the shortcuts are unknown.

Adversarial training aims to learn 
better representations that do not 
contain information about artifacts or 
bias in the data. It is typically imple-
mented in two ways in the NLP do-
main:30,40 First, the task classifier and 
adversarial classifier jointly share the 
same encoder.40 The goal of the adver-
sarial classifier is to provide the cor-
rect predictions for the artifacts in the 
training data. Then the encoder and 
task classifier can be trained to opti-
mize the task objective while reduc-
ing the performance of the adversarial 
classifier in predicting artifacts. Sec-
ond, adversarial examples are gener-
ated to maximize a loss function, and 
the model is trained to minimize the 
loss function. For example, the gen-
erator based on the masked language 
model is used to perturb the text to 
generate adversarial samples.30 De-
spite the difference, both methods 
leverage the MinMax formulation dur-
ing the debiasing process.

Explanation regularization. This 
category aims to regularize model 
training using prior knowledge estab-
lished by humans.18 Specifically, it is 
achieved by regularizing the feature 
attribution explanations with ratio-
nale annotations created by domain 
experts, to enforce the model to make 
the right predictions for the right rea-
sons.18 These systems are trained to ex-
plicitly encourage the network to focus 
on features in the input that humans 
have annotated as important and sup-
press the models’ attention to superfi-

Figure 4. Combining more human knowledge to different stages of the pipeline.

Combining More Human Knowledge

LLM architecture Pretraining

Designing
better pretraining

objectives

Combining
task-specific
knowledge

Curating 
challenging
evaluation
datasets

Fine-tuning Evaluation

Introducing more
inductive bias

Specifically, knowledge can be combined to the architecture of model, model training 
process (both pretraining and fine-tuning), and model evaluation process.
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model robustness. Recent studies 
indicate that choosing a better pre-
trained model could bring much better 
generalization performance than ro-
bust learning methods discussed ear-
lier. For example, RoBERTa-base with 
a standard fine-tuning loss could even 
outperform the BERT-base with robust 
learning objectives in terms of general-
ization performance on the HANS test 
set.2 This highlights the importance 
of pretraining in NLU model general-
ization performance and calls for in-
creased community efforts to improve 
pretrained language models.

Better fine-tuning approaches. NLU 
tasks may contain various types of 
bias, which are not fully known even by 
domain experts. This is distinct from 
the literature that works with the toy 
task (for example, Colored MNIST1), 
which typically contains a single type 
of bias and the bias is fully known. As a 
result, most existing mitigation meth-
ods for NLU tasks rely on human prior 
knowledge heuristics. Some examples 
include: weak models are more prone 
to capture biases, and non-robust 
models tend to give overconfident 
predictions for easy samples, among 
others. Unfortunately, this prior 
knowledge can only identify a limited 
number of biases in the data. Although 
it is possible to reduce the use of some 
identified shortcuts, models may still 
use other shortcuts for prediction. 
This could explain why existing miti-
gation methods only provide a lim-
ited improvement in generalization. 
As a result, it is suggested to incorpo-
rate more human-like common sense 
knowledge into the model training.

Curating challenging evaluation da-
tasets. It is encouraging to see that 
some benchmark datasets for adversar-
ial and OOD robustness have emerged. 
For example, adversarial GLUE is pro-
posed for adversarial robustness evalu-
ation, which contains 14 adversarial 
attack methods.47 Despite these recent 
advances, it is necessary to continue 
curating difficult evaluation datasets 
that cover a wider range of NLU tasks, 
such as reading comprehension, and 
that cover a wider range of biases, such 
as those listed previously.

Revisiting the mitigation approach-
es. Existing mitigation methods have 
typically had limited mitigation perfor-
mance. For example, for the MNLI task, 

tential research directions that could 
be pursued by the community.

Introducing more domain knowl-
edge. The current standard of LLM 
training is data-driven. This is prob-
lematic because the resulting models 
essentially perform low-level pattern 
recognition. It may be useful for low-
level NLP tasks like named-entity recog-
nition (NER), but it is nearly impossible 
to tackle the more difficult natural lan-
guage understanding tasks. As a result, 
it is preferable to combine the data-
driven scheme with domain knowledge 
by incorporating knowledge at various 
stages of training. Furthermore, more 
knowledge should be applied to the de-
sign of the model architecture and the 
model evaluation (see Figure 4).

Inductive bias to LLMs models. It is 
suggested to introduce more induc-
tive bias into the model architecture 
to improve robustness and general-
ization beyond IID benchmark data-
sets. Recently, some work has begun 
to induce certain kinds of linguistic 
structure in neural architectures. For 
example, TableFormer is proposed for 
robust table understanding.50 It pro-
poses a structurally aware table-text 
encoding architecture, where tabu-
lar structural biases are incorporated 
through learnable attention biases. 
Although introducing linguistic-ori-
ented biases to the model architec-
tures might not result in the best per-
formance for benchmark datasets, it 
is essential to improve generalization 
beyond IID benchmarks. Note that in-
ductive biases are highly task-depen-
dent and should be carefully designed 
for each specific task to accommodate 
its unique characteristic.

Better pre-training objectives. The 
pre-training objective also plays a cru-
cial role in determining the OOD ro-
bustness of fine-tuned language mod-
els. As an example, recent studies have 
shown that pretrained BERT embed-
dings suffer from strong anisotropy, 
meaning the average cosine similarity 
is significantly higher than zero and 
word vectors cluster in narrow cones in 
the vector space.11,17 This leads to word 
representations having a high simi-
larity to unrelated words, impacting 
their expressive power and accuracy 
in downstream tasks. It is desirable 
to invest more effort in designing bet-
ter pre-training objectives to improve 

Adversarial training 
aims to learn better 
representations 
that do not contain 
information about 
artifacts or bias in 
the data. 
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and task-relevant features. Although 
these existing works provide insights 
into the reason of shortcut learning of 
shallow neural networks, there is still a 
lack of a solid theoretical understand-
ing of why LLMs learn shortcuts. Fur-
ther research is needed to fully explain 
this tendency in the context of LLMs.

Taking inspiration from other di-
rections. In addition, we can take in-
spiration from other relevant direc-
tions to address the shortcut learning 
issue of LLMs.

Domain adaptation and generaliza-
tion. The robust learning approaches 
we discussed are closely relevant to 
domain adaptation and domain gen-
eralization. The three directions share 
the similarity that training and test sets 
are not from the same distribution, that 
is, there is a certain distribution shift. 
However, the objective of robust learn-
ing is distinct from domain adapta-
tion, which aims to generalize to a spe-
cific target domain. In contrast, robust 
learning is closer to domain generaliza-
tion, where both areas have the goal of 
generalizing over a range of unknown 
conditions. The NLP community can 
leverage the findings from the domain 
generalization area to design more ro-
bust learning methods for LLMs.

Long-tailed classification. Long-tailed 
classification addresses the issue of 
long-tailed distributed data, in which 
the head class has many training sam-
ples while the tail class has few. Shortcut 
learning can be treated as a special case 
of long-tailed classification, where easy 
samples correspond to the head class 
and hard samples represent the tail 
class. Some of the robust learning solu-
tions (for example, reweighting) share a 
similar philosophy with approaches to 
the long-tailed classification problem. 
Leveraging ideas from approaches to 
long-tailed classification could improve 
the robustness of LLMs even further.

Algorithmic discrimination. Shortcut 
learning could also lead to discrimina-
tion and unfairness in deep learning 
models. In contrast to the general bias 
captured by the models, the spurious 
patterns here usually correspond to 
societal biases in terms of humans (for 
example, racial bias and gender bias). 
Here, the models have associated the 
fairness-sensitive attributes (for exam-
ple, ZIP code and surname) with main 
prediction task labels (for example, 

the accuracy for mitigated models with 
BERT-base as the backbone is consis-
tently lower than 70% for the HANS test 
set.44 Note that HANS is a balanced bi-
nary test set, where 50% is the accuracy 
of the random guess. The improvement 
in performance falls far short of our 
expectations. This brings up the fol-
lowing questions: What have the miti-
gation algorithms accomplished? How 
can mitigation performance be im-
proved further? Debiased algorithms 
are thought to achieve better general-
ization because they can learn more 
robust features than biased models 
that rely primarily on non-robust fea-
tures. However, this is not always the 
case with debiased algorithms. A recent 
work uses explainability as a debugging 
tool to analyze debiased models.21 The 
analysis indicates the debiased models 
encode more biases in their inner rep-
resentations. It is speculated the im-
proved performance on the OOD data 
comes from the refined classification 
head. More research is needed to in-
vestigate whether the debiased model 
has captured more robust features and 
what is the source of their improved 
generalization. This also suggests an 
interesting research direction by only 
updating the biased classification 
head, as updating the entire model is 
typically difficult and time consuming.

In-depth theoretical understand-
ing. In addition to the current em-
pirical research, there is also a grow-
ing trend of preliminary theoretical 
research aimed at uncovering the 
shortcut learning behavior of DNN 
models.22,34,46 For instance, using one-
hidden-layer neural networks as the 
base model, one theoretical work un-
covers that neural networks tend to ex-
clusively rely on simplest and non-ro-
bust features, while remain invariant 
to other useful but more complex fea-
tures.34 This type of simplicity bias is 
one of the primary causes of low OOD 
generalization and adversarial vulner-
ability. Another theoretical study has 
investigated the reason behind super-
ficial correlations from the optimiza-
tion perspective.46 By using a depth-2 
ReLU network as an example, the study 
proposed the Gradient Starvation phe-
nomenon, which states the gradient 
descent optimization methods tend 
to learn non-robust networks while 
slowing down the learning of robust 

Debiased 
algorithms 
are thought to 
achieve better 
generalization 
because they can 
learn more robust 
features than biased 
models that rely 
primarily on non-
robust features. 
However, that is 
not always the 
case with debiased 
algorithms.
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study explores the impact of prompts 
on natural language inference tasks 
in zero-shot and few shot settings us-
ing T0 (3B and 11B parameters) and 
GPT-3 (175B parameters).48 Experi-
mental results suggest that models 
can learn just as quickly with many ir-
relevant or even misleading prompts 
as they can with effective and instruc-
tive prompts. This indicate that mod-
els’ improvement is not derived from 
models understanding task instruc-
tions in ways analogous to humans’ 
use of task instructions.

Prompting versus standard fine-
tuning. GPT-3’s few-shot prompt per-
formance is compared to that of BERT 
and RoBERTa through standard fine-
tuning on two natural language infer-
ence tasks, that is, MNLI and QQP.36 
Additionally, these models are evaluat-
ed on the corresponding difficult OOD 
datasets: HANS and PAWS. The results 
show that GPT-3 performs slightly 
worse in generalization than BERT and 
RoBERTa on the in distribution MNLI 
and QQP datasets. On the other hand, 
GPT-3 achieves higher accuracy on the 
OOD tests for the majority of testing 
settings, indicating that GPT-3 has a 
lower generalization gap between the 
in-distribution test set and the OOD 
test set, and thus a higher robustness. 
However, further analysis of the HANS 
dataset reveals that GPT-3 still exhibits 
substantial performance disparities 
between the bias-supporting and bias-
countering subsets. This implies there 
is room for enhancing the robustness 
of prompt-based techniques.

Note the current research on 
prompt-based methods primarily aims 
at improving LLMs’ performance on 
standard benchmarks. The robustness 
and generalization of this paradigm 
still require further investigation. A 
more thorough evaluation of prompt-
based methods is needed and could be 
a future research topic. Additionally, 
techniques such as Chain-of-Thought49 
and Scratchpad24 have been utilized to 
encourage models to perform inter-
mediate calculations. These methods 
have proven to enhance the reasoning 
abilities of LLMs, thus having the po-
tential to improve their robustness and 
generalization capabilities. Lastly, de-
veloping mitigation frameworks that 
can improve generalization perfor-
mance on OOD test sets without sac-

fine-tuning and prompting without 
fine-tuning. Prompt-based finetuning 
aims to enable medium-sized language 
models like BERT or RoBERTa to be 
few-shot learners, and this still requires 
optimizing the model’s parameters. 
On the other hand, prompting with-
out fine-tuning is meant for huge-sized 
language models like GPT-3, where the 
parameters are fixed and the model is 
applied to various tasks using different 
prompts, either discrete or soft.

Prompt-based fine-tuning. Prelimi-
nary research has been conducted to 
examine the shortcut learning chal-
lenge in the few-shot prompt-based 
fine-tuning paradigm.45 This prelimi-
nary study investigated the RoBERTa-
large model, which comprises 355 
million parameters. This work re-
veals the following insights: zero-shot 
prompt-based models exhibit a higher 
level of robustness against the lexical 
overlap heuristic during inference, 
as evidenced by their strong perfor-
mance on relevant challenge datasets. 
Conversely, prompt-based fine-tuned 
models tend to adopt the spurious 
heuristic as they learn from larger 
amounts of labeled data, which is re-
flected by poor performance on OOD 
datasets. This indicates that prompt-
based fine-tuning negatively impacts 
the robustness and generalizability 
of a model, just like the standard fine-
tuning. The primary reason is that 
both training methods require adjust-
ing the model’s parameters using a 
biased NLI dataset, leading to a model 
that heavily relies on dataset biases as 
shortcuts for predictions.

Prompting without fine-tuning. 
Preliminary studies are emerging to 
examine the robustness of prompt-
based methods for huge-size language 
models.48,52 A study examines the few-
shot learning performance of GPT-3 
(2.7B, 13B, and 175B parameters) and 
GPT-2 (1.5B parameters) on text clas-
sification and information extraction 
tasks.52 The results of the analysis 
reveal the investigated LLMs are sus-
ceptible to majority label bias and po-
sition bias, where they tend to predict 
answers based on the frequency or 
position of the answers in the training 
data. Additionally, these LLMs also 
exhibit common token bias, where 
they favor answers that are prevalent 
in their pre-training corpus. Another 

mortgage loan rejection). At the infer-
ence time, the model would amplify 
the bias and show discrimination to-
ward certain demographic groups, for 
example, African Americans.

Motivating other directions. We can 
also take advantage of the insights dis-
cussed above to motivate the develop-
ment of other directions.

Backdoor attack. While we have fo-
cused on the setting in which LLMs have 
unintentionally captured undesirable 
shortcuts, we must note the adversary 
can intentionally insert shortcuts into 
LLMs, which could be a potential secu-
rity threat to the deployed LLMs. This is 
called the backdoor attack (or poison-
ing/Trojan attack). Backdoor attackers 
insert human-crafted easy patterns that 
serve as shortcuts during the model 
training process, explicitly encouraging 
the model to learn shortcuts. Represen-
tative examples include modifying the 
style of text and adding shortcut uni-
grams such as double quotation marks.

Watermarking. Unlike malicious use 
of shortcut learning as the backdoor 
attack, shortcut learning can also be 
used for benign purposes. Trigger pat-
terns can be inserted as watermarks 
by model owners during the training 
phase to protect the IP of companies. 
When LLMs are used by unauthorized 
users, shortcuts in the format of trigger 
patterns can be used by the stakehold-
ers to claim ownership of the models.

Prompt-Based Paradigm
In previous sections, we have explored 
the characterization of the shortcut 
learning problem in the pre-training 
and fine-tuning training paradigm of 
medium-sized language models (typi-
cally with less than a billion param-
eters). With the recent emergence of 
huge-sized language models (with bil-
lions of parameters) such as GPT-3 and 
T5, the prompt-based paradigm has 
evolved into a new training paradigm 
with distinct formats from the stan-
dard fine-tuning paradigm. Consider 
the example of prompt for GPT-3. Us-
ing natural language instructions and/
or demonstration of a few tasks, the 
LLM can generate the desired output 
without the need for gradient updates 
or fine-tuning.

Robustness of prompt-based meth-
ods. There are two types of prompt-
based paradigms: prompt-based 
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rificing standard benchmark perfor-
mance deserves more attention from 
the research community.

Conclusion
We present a thorough survey of the 
LLM’s shortcut learning issue for NLU 
tasks in this article. Our findings sug-
gest that shortcut learning is caused by 
a skewed dataset, model architecture, 
and model learning dynamics. We also 
summarize the mitigation solutions 
that can be used to reduce shortcut 
learning and improve the robustness 
of LLMs. Furthermore, we discuss di-
rections that merit additional research 
effort from the research community, 
as well as the connections between 
shortcut learning and other relevant 
directions. The key takeaways from 
this survey’s analysis are the current 
pure data-driven training paradigm for 
LLMs is insufficient for high-level natu-
ral language understanding. In the fu-
ture, the data-driven paradigm should 
be combined with domain knowledge 
at every stage of model design and eval-
uation to advance the field of LLMs. 
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