
Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Word2vec embeddings: CBOW and Skipgram

VL Embeddings

Uni Heidelberg

SS 2019

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Intuition

• Window size: 2

• Center word at position t: Maus

P(wt−2|wt) P(wt−1|wt) P(wt+1|wt) P(wt+2|wt)

Die kleine graue Maus frißt den leckeren Käse
wt−2 wt−1 wt wt+1 wt+2

Same probability distribution used for all context words

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Intuition

• Window size: 2

• Center word at position t: frißt

P(wt−2|wt) P(wt−1|wt) P(wt+1|wt) P(wt+2|wt)

Die kleine graue Maus frißt den leckeren Käse
wt−2 wt−1 wt wt+1 wt+2

Same probability distribution used for all context words

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Intuition

• Window size: 2

• Center word at position t:

P(wt−2|wt) P(wt−1|wt) P(wt+1|wt) P(wt+2|wt)

Die kleine graue Maus frißt den leckeren Käse
wt−2 wt−1 wt wt+1 wt+2

Same probability distribution used for all context words

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Objective function

For each position t = 1, ...,T , predict context words within a
window of fixed size m, given center word wj .

L(θ) =
T∏
t=1

∏
−m≤j≤m

P(wt+j |wt ; θ) (1)Likelihood =

j 6= 0 What is θ?

J(θ) = − 1

T
log L(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt ; θ) (2)

j 6= 0

Minimising objective function ⇔ maximising predictive accuracy

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Objective function

For each position t = 1, ...,T , predict context words within a
window of fixed size m, given center word wj .

L(θ) =
T∏
t=1

∏
−m≤j≤m

P(wt+j |wt ; θ) (1)Likelihood =

j 6= 0 θ: vector representations
of each word

J(θ) = − 1

T
log L(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt ; θ) (2)

j 6= 0

Minimising objective function ⇔ maximising predictive accuracy

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Objective function

For each position t = 1, ...,T , predict context words within a
window of fixed size m, given center word wj .

L(θ) =
T∏
t=1

∏
−m≤j≤m

P(wt+j |wt ; θ) (1)Likelihood =

j 6= 0 θ: vector representations
of each word

Objective function (cost function, loss function): Maximise the
probability of any context word given the current center word wt

J(θ) = − 1

T
log L(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt ; θ) (2)

j 6= 0

Minimising objective function ⇔ maximising predictive accuracy

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Objective function

For each position t = 1, ...,T , predict context words within a
window of fixed size m, given center word wj .

L(θ) =
T∏
t=1

∏
−m≤j≤m

P(wt+j |wt ; θ) (1)Likelihood =

j 6= 0 θ: vector representations
of each word

The objective function J(θ) is the (average) negative log-likelihood:
(cost function, loss function)

J(θ) = − 1

T
log L(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt ; θ) (2)

j 6= 0

Minimising objective function ⇔ maximising predictive accuracy

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Objective function

For each position t = 1, ...,T , predict context words within a
window of fixed size m, given center word wj .

L(θ) =
T∏
t=1

∏
−m≤j≤m

P(wt+j |wt ; θ) (1)Likelihood =

j 6= 0 θ: vector representations
of each word

The objective function J(θ) is the (average) negative log-likelihood:
(cost function, loss function)

J(θ) = − 1

T
log L(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt ; θ) (2)

j 6= 0

Minimising objective function ⇔ maximising predictive accuracy

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Objective function – Motivation

• We want to model the probability distribution over mutually
exclusive classes
• measure the difference between predicted probabilities ŷ and

ground-truth probabilities y
• during training: tune parameters so that this difference is

minimised

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Negative log-likelihood

Why is minimising the negative log likelihood equivalent to
maximum likelihood estimation (MLE)?

L(θ) =
T∏
t=1

∏
−m≤j≤m

P(wt+j |wt ; θ)

MLE = argmax L(θ, x)

• The log allows us to convert a product of factors into a
summation of factors (nicer mathematical properties)

• arg max
x

(x) is equivalent to arg min
x

(−x)

J(θ) = − 1
T log L(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt ; θ)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Negative log-likelihood

Why is minimising the negative log likelihood equivalent to
maximum likelihood estimation (MLE)?

L(θ) =
T∏
t=1

∏
−m≤j≤m

P(wt+j |wt ; θ)

MLE = argmax L(θ, x)

• The log allows us to convert a product of factors into a
summation of factors (nicer mathematical properties)

• arg max
x

(x) is equivalent to arg min
x

(−x)

J(θ) = − 1
T log L(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt ; θ)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Negative log-likelihood

• We can interpret negative log-probability as information
content or surprisal

What is the log-likelihood of a model, given an event?

⇒ The negative of the surprisal of the event, given the model:
A model is supported by an event to the extent that the event
is unsurprising, given the model.

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross entropy loss

Negative log likelihood is the same as cross entropy

Recap: Entropy

• If a discrete random variable X has the probability p(x), then
the entropy of X is

H(X) =
∑
x

p(x)log
1

p(x)
= −

∑
x

p(x)log p(x)

⇒ expected number of bits needed to encode X if we use an
optimal coding scheme

Cross entropy

⇒ number of bits needed to encode X if we use a suboptimal
coding scheme q(x) instead of p(x)

H(p, q) =
∑
x

p(x)log
1

q(x)
= −

∑
x

p(x)log q(x)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross entropy loss

Negative log likelihood is the same as cross entropy

Recap: Entropy

• If a discrete random variable X has the probability p(x), then
the entropy of X is

H(X) =
∑
x

p(x)log
1

p(x)
= −

∑
x

p(x)log p(x)

⇒ expected number of bits needed to encode X if we use an
optimal coding scheme

Cross entropy

⇒ number of bits needed to encode X if we use a suboptimal
coding scheme q(x) instead of p(x)

H(p, q) =
∑
x

p(x)log
1

q(x)
= −

∑
x

p(x)log q(x)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if p = q)

Kullback-Leibler (KL) divergence: difference between
cross entropy and entropy

KL(p||q) =
∑
x

p(x)log
1

q(x)
−
∑
x

p(x)log
1

p(x)
=
∑
x

p(x)log
p(x)

q(x)

⇒ number of extra bits needed when using q(x) instead of p(x)
(also known as the relative entropy of p with respect to q)

Cross entropy:

H(p, q) = −
∑
x∈X

p(x) log q(x) = H(p) + KL(p||q)

Minimising H(p, q) → minimising the KL divergence from q to p

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if p = q)

Kullback-Leibler (KL) divergence: difference between
cross entropy and entropy

KL(p||q) =
∑
x

p(x)log
1

q(x)
−
∑
x

p(x)log
1

p(x)
=
∑
x

p(x)log
p(x)

q(x)

⇒ number of extra bits needed when using q(x) instead of p(x)
(also known as the relative entropy of p with respect to q)

Cross entropy:

H(p, q) = −
∑
x∈X

p(x) log q(x) = H(p) + KL(p||q)

Minimising H(p, q) → minimising the KL divergence from q to p

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if p = q)

Kullback-Leibler (KL) divergence: difference between
cross entropy and entropy

KL(p||q) =
∑
x

p(x)log
1

q(x)
−
∑
x

p(x)log
1

p(x)
=
∑
x

p(x)log
p(x)

q(x)

⇒ number of extra bits needed when using q(x) instead of p(x)
(also known as the relative entropy of p with respect to q)

Cross entropy:

H(p, q) = −
∑
x∈X

p(x) log q(x) = H(p) + KL(p||q)

Minimising H(p, q) → minimising the KL divergence from q to p

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if p = q)

Kullback-Leibler (KL) divergence: difference between
cross entropy and entropy

KL(p||q) =
∑
x

p(x)log
1

q(x)
−
∑
x

p(x)log
1

p(x)
=
∑
x

p(x)log
p(x)

q(x)

⇒ number of extra bits needed when using q(x) instead of p(x)
(also known as the relative entropy of p with respect to q)

Cross entropy:

H(p, q) = −
∑
x∈X

p(x) log q(x) = H(p) + KL(p||q)

Minimising H(p, q) → minimising the KL divergence from q to p

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if p = q)

Kullback-Leibler (KL) divergence: difference between
cross entropy and entropy

KL(p||q) =
∑
x

p(x)log
1

q(x)
−
∑
x

p(x)log
1

p(x)
=
∑
x

p(x)log
p(x)

q(x)

⇒ number of extra bits needed when using q(x) instead of p(x)
(also known as the relative entropy of p with respect to q)

Cross entropy:

H(p, q) = −
∑
x∈X

p(x) log q(x) = H(p) + KL(p||q)

Minimising H(p, q) → minimising the KL divergence from q to p

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross-entropy loss (or logistic loss)

• Use cross entropy to measure the difference between two
distributions p and q

• Use total cross entropy over all training examples as the loss

Lcross−entropy (p, q) = −
∑
i

pi log(qi)

= −log(qt) for hard classification
where qt is the correct class

J(θ) = − 1
T log L(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt ; θ)

j 6= 0

Negative log-likelihood = cross entropy

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross-entropy loss (or logistic loss)

• Use cross entropy to measure the difference between two
distributions p and q

• Use total cross entropy over all training examples as the loss

Lcross−entropy (p, q) = −
∑
i

pi log(qi)

= −log(qt) for hard classification
where qt is the correct class

J(θ) = − 1
T log L(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt ; θ)

j 6= 0

Negative log-likelihood = cross entropy

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Objective function

We want to minimise the objective function:

Cross-entropy loss

J(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt ; θ) (2)

j 6= 0

• Question: How to calculate P(wt+j |wt ; θ) ?

• Answer: We will use two vectors per word w :
• vw when w is a center word
• uw when w is a context word

• Then for a center word c and a context word o:

P(o|c) =
exp(uTo vc)∑

w∈V
exp(uTw vc)

(3)

Take dot products between the two word vectors, put them in Softmax

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Objective function

We want to minimise the objective function:

Cross-entropy loss

J(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt ; θ) (2)

j 6= 0

• Question: How to calculate P(wt+j |wt ; θ) ?

• Answer: We will use two vectors per word w :
• vw when w is a center word
• uw when w is a context word

• Then for a center word c and a context word o:

P(o|c) =
exp(uTo vc)∑

w∈V
exp(uTw vc)

(3)

Take dot products between the two word vectors, put them in Softmax

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Objective function

We want to minimise the objective function:

Cross-entropy loss

J(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt ; θ) (2)

j 6= 0

• Question: How to calculate P(wt+j |wt ; θ) ?

• Answer: We will use two vectors per word w :
• vw when w is a center word
• uw when w is a context word

• Then for a center word c and a context word o:

P(o|c) =
exp(uTo vc)∑

w∈V
exp(uTw vc)

(3)

Take dot products between the two word vectors, put them in Softmax

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Recap: Dot products

• Measure of similarity (well, kind of...)

• Bigger if u and v are more similar
(if vectors point in the same direction)

u>v = u · v =
n∑

i=1

uivi (4)

• Iterating over w = 1 . . .W : u>w v

⇒ work out how similar each word is to v

P(o|c) =
exp(uTo vc)

V∑
w=1

exp(uTw vc)

(5)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Softmax function

Standard mapping from RV to a probability distribution

Exponentiate to
make positive

pi = exi∑N
j=1 e

xj

Normalise to
get probability

• Softmax function maps arbitrary values xi to a probability
distribution pi
• max because amplifies probability of largest xi
• soft because still assigns some probability to smaller xi

This gives us a probability estimate p(wt−1|wt)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Difference Sigmoid Function – Softmax

Sigmoid Function

• binary classification in
logistic regression

• sum of probabilities not
necessarily 1

• activation function

Softmax Function

• multi-classification in
logistic regression

• sum of probabilities
will be 1

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Why two representations for each word?

• We create two representations for each word in the corpus:

1. w as a context word
2. w as a center word

• Easier to compute → we can optimise vectors separately

• Also works better in practice...

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Predict the label

Dot product compares similarity of o and c
Larger dot product = larger probability

p(o|c) =
exp(u>o vc)∑

w∈V
exp(u>w vc)

(6)

After taking exponent,
normalise over entire vocab

• For training the model, compute for all words in the corpus:

J(θ) = − 1
T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt ; θ)

j 6= 0

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Predict the label

Dot product compares similarity of o and c
Larger dot product = larger probability

p(o|c) =
exp(u>o vc)∑

w∈V
exp(u>w vc)

(6)

After taking exponent,
normalise over entire vocab

• For training the model, compute for all words in the corpus:

J(θ) = − 1
T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt ; θ)

j 6= 0

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Training the model

• Recall: θ represents all model parameters, in one long vector

• For d-dimensional vectors and V-many words:

θ =



vaas
vamaranth
...
vzoo
uaas
uameise
...
uzoo


∈ R2dV (7)

• Remember: every word has two vectors ⇒ 2d

• We now optimise the parameters θ

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Training the model

Generative model: predict the context for a given center word

• We have an objective function:

J(θ) = − 1
T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt)

• We want to minimise the negative log-likelihood
(maximise the probability we predict)

• Probability distribution: p(o|c) = exp(u>o vc)∑
w∈V

exp(u>w vc)

• How do we know how to change the parameters
(i.e. the word vectors)?

→ Use the gradient

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram – Training the model

Generative model: predict the context for a given center word

• We have an objective function:

J(θ) = − 1
T

T∑
t=1

∑
−m≤j≤m

log P(wt+j |wt)

• We want to minimise the negative log-likelihood
(maximise the probability we predict)

• Probability distribution: p(o|c) = exp(u>o vc)∑
w∈V

exp(u>w vc)

• How do we know how to change the parameters
(i.e. the word vectors)? → Use the gradient

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Minimising the objective function

We want to optimise (maximise or minimise) our objective function

• How do we know how to change the parameters?

Use the gradient

• Gradient ∇J(θ) of a function gives direction of steepest ascent

• Gradient Descent is an algorithm to minimise J(θ)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent – Intuition

• Idea:
• for a current value of θ, calculate gradient of J(θ)
• then take a small step in the direction of the

negative gradient
• repeat

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent – Intuition

• Find local minimum for a given cost function
• at each step, GD tells us in which direction to move

to lower the cost

• No guarantee that we find the best global solution!

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent – Intuition

• How do we know the direction?

• Best guess: move in the direction of the slope (gradient)
of the cost function

• Arrows: gradient of the cost function at different points

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent – Intuition

• Gradient of a function
• vector that points in the direction of the steepest ascent

• Gradient is deeply connected to its derivative

• Derivative f ′ of a function
• a single number that indicates how fast the function is rising

when moving in the direction of its gradient

• f ′(p): value of f ′ at point p
• f ′(p) > 0⇒ f is going up
• f ′(p) < 0⇒ f is going down
• f ′(p) = 0⇒ f is flat

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient-Based Optimisation
Given some function y = f (x) with x , y ∈ R

• We want to optimise (maximise or minimise) it by updating x

minx∈Rf (x)

• Gradient Descent: reduce f (x) by moving x in small steps
with the opposite sign of the derivative

What if we have functions with multiple inputs?

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient-Based Optimisation
Given some function y = f (x) with x , y ∈ R

• minx∈Rf (x)

• Gradient Descent: reduce f (x) by moving x in small steps
with the opposite sign of the derivative

What if we have functions with multiple inputs?

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient-Based Optimisation
Given some function y = f (x) with x , y ∈ R

• minx∈Rf (x)

• Gradient Descent: reduce f (x) by moving x in small steps
with the opposite sign of the derivative

What if we have functions with multiple inputs?

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient-Based Optimisation

Given some function y = f (x) with x , y ∈ R

• the derivative f ′(x) of this function is dy
dx

• gives the slope of f (x) at point x

⇒ tells us how to change x
to make a small improvement in y :

xi = xi−1 − αf ′(xi) α = step size or learning rate

• Gradient Descent: reduce f (x) by moving x in small steps
with the opposite sign of the derivative

What if we have functions with multiple inputs?

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient-Based Optimisation

Given some function y = f (x) with x , y ∈ R

• the derivative f ′(x) of this function is dy
dx

• gives the slope of f (x) at point x

⇒ tells us how to change x
to make a small improvement in y :

xi = xi−1 − αf ′(xi) α = step size or learning rate

• Gradient Descent: reduce f (x) by moving x in small steps
with the opposite sign of the derivative

What if we have functions with multiple inputs?

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient-Based Optimisation

Given some function y = f (x) with x , y ∈ R

• the derivative f ′(x) of this function is dy
dx

• gives the slope of f (x) at point x

⇒ tells us how to change x
to make a small improvement in y :

xi = xi−1 − αf ′(xi) α = step size or learning rate

• Gradient Descent: reduce f (x) by moving x in small steps
with the opposite sign of the derivative

What if we have functions with multiple inputs?

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent with multiple inputs

• We can use partial derivatives ∂
∂xi

f (x)

• measures how f changes as only xi increases at point x

• Gradient of f :
• gives direction of steepest ascent ∇x f (x)
• vector containing all partial derivatives for f (x)

• Element i of the gradient ∇ is the partial derivative of f
with respect to xi

Which direction should we step to decrease the function?

• Gradient descent algorithm:

• compute ∇x f (x)
• take small step in −∇x f (x) direction
• repeat

• Minimise f by applying small updates to x : x ′ = x −α∇x f (x)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent with multiple inputs

• We can use partial derivatives ∂
∂xi

f (x)

• measures how f changes as only xi increases at point x

• Gradient of f :
• gives direction of steepest ascent ∇x f (x)
• vector containing all partial derivatives for f (x)

• Element i of the gradient ∇ is the partial derivative of f
with respect to xi

Which direction should we step to decrease the function?

• Gradient descent algorithm:

• compute ∇x f (x)
• take small step in −∇x f (x) direction
• repeat

• Minimise f by applying small updates to x : x ′ = x −α∇x f (x)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent with multiple inputs

• We can use partial derivatives ∂
∂xi

f (x)

• measures how f changes as only xi increases at point x

• Gradient of f :
• gives direction of steepest ascent ∇x f (x)
• vector containing all partial derivatives for f (x)

• Element i of the gradient ∇ is the partial derivative of f
with respect to xi

Which direction should we step to decrease the function?

• Gradient descent algorithm:

• compute ∇x f (x)
• take small step in −∇x f (x) direction
• repeat

• Minimise f by applying small updates to x : x ′ = x −α∇x f (x)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent with multiple inputs

• We can use partial derivatives ∂
∂xi

f (x)

• measures how f changes as only xi increases at point x

• Gradient of f :
• gives direction of steepest ascent ∇x f (x)
• vector containing all partial derivatives for f (x)

• Element i of the gradient ∇ is the partial derivative of f
with respect to xi

Which direction should we step to decrease the function?

• Gradient descent algorithm:

• compute ∇x f (x)
• take small step in −∇x f (x) direction
• repeat

• Minimise f by applying small updates to x : x ′ = x −α∇x f (x)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent with multiple inputs

Critical points in 2D (one input value):

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent with multiple inputs

Critical points in 3D:

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent with multiple inputs

• Update equation (in matrix notation):

θnew = θold − α∇θJ(θ)

α = step size or learning rate

• Update equation (for a single parameter):

θnewj = θoldj − α ∂
∂θoldj

J(θ)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent with multiple inputs

• Problem: J(θ) is a function of all windows in the corpus
(extremely large!)

• So ∇θJ(θ) is very expensive to compute
⇒ Takes too long for a single update!

• Solution: Stochastic Gradient Descent
• Repeatedly sample windows and update after each one

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

Goal: find parameters θ that reduce cost function J(θ)

Algorithm 1 Pseudocode for SGD

1: Input:
2: – function f (x ; θ)
3: – training set of inputs x1, . . . , xn and gold outputs y1, . . . , yn
4: – loss function J
5: while stopping criteria not met do
6: Sample a training example xi , yi
7: Compute the loss J(f (xi ; θ), yi)
8: ∇ ← gradients of J(f (xi ; θ), yi) w.r.t. θ
9: Update θ ← θ − α∇

10: end while
11: return θ

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

Goal: find parameters θ that reduce cost function J(θ)

• Impact of learning rate α:
• too low → learning proceeds slowly
• initial α too low → learning may become stuck with high cost

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

Goal: find parameters θ that reduce cost function J(θ)

• Important property of SGD (and related minibatch or online
gradient-based optimization)
• computation time per update does not grow with increasing

number of training examples

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

θ =



w0

w1

w2

...
w19.998

w19.999

w20.000



−∇J(θ) =



0.31
0.03
−1.25

...
0.78
−0.37

0.16



w0 should increase somewhat
w1 should increase a little
w2 should decrease a lot

...
w19.998 should increase a lot

w19.999 should decrease somewhat
w20.000 should increase a little

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

θ =



w0

w1

w2

...
w19.998

w19.999

w20.000



−∇J(θ) =



0.31
0.03
−1.25

...
0.78
−0.37

0.16



w0 should increase somewhat
w1 should increase a little
w2 should decrease a lot

...
w19.998 should increase a lot

w19.999 should decrease somewhat
w20.000 should increase a little

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

θ =



w0

w1

w2

...
w19.998

w19.999

w20.000



−∇J(θ) =



0.31
0.03
−1.25

...
0.78
−0.37

0.16



w0 should increase somewhat
w1 should increase a little
w2 should decrease a lot

...
w19.998 should increase a lot

w19.999 should decrease somewhat
w20.000 should increase a little

Average over all training data
Encodes the relative importance of each weight

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

θ =



w0

w1

w2

...
w19.998

w19.999

w20.000



−∇J(θ) =



0.31
0.03
−1.25

...
0.78
−0.37

0.16



w0 should increase somewhat
w1 should increase a little
w2 should decrease a lot

...
w19.998 should increase a lot

w19.999 should decrease somewhat
w20.000 should increase a little

Average over all training data
Encodes the relative importance of each weight

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

• Make a forward pass through the network to compute
the output

• Take the output that the network predicts

• Take the output that it should predict

• Compute the total cost of the network J(θ)

Propagate the error back through the network

⇒ Backpropagation

• procedure to compute the gradient of the cost function:

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

• Make a forward pass through the network to compute
the output

• Take the output that the network predicts

• Take the output that it should predict

• Compute the total cost of the network J(θ)

Propagate the error back through the network

⇒ Backpropagation

• procedure to compute the gradient of the cost function:

Compute the partial derivatives ∂J(θ)
∂w and ∂J(θ)

∂b of the cost function
J(θ) with respect to any weight w or bias b in the network.

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

• Make a forward pass through the network to compute
the output

• Take the output that the network predicts

• Take the output that it should predict

• Compute the total cost of the network J(θ)

Propagate the error back through the network

⇒ Backpropagation

• procedure to compute the gradient of the cost function:

How do we have to change the weights and biases
in order to change the cost?

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Parameter initialisation

• Before we start training the network we have to initialise the
parameters
• Why not use zero as initial values?
• Not a good idea, outputs will be the same for all nodes
• Instead, use small random numbers, e.g.:

• use normally distributed values around zero N(0, 0.1)
• use Xavier initialisation (Glorot and Bengio 2010)
• for debugging: use fixed random seeds

• Now let’s start the training:
• predict labels
• compute loss
• update parameters

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Forward pass

• Computes the output of the network

• Each node’s output depends only on itself and on its
incoming edges

• Traverse the nodes and compute the output of each node,
given the already computed outputs of its predecessors

Image taken from http://neuralnetworksanddeeplearning.com/chap2.html

http://neuralnetworksanddeeplearning.com/chap2.html

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Forward pass

• Computes the output of the network

• Each node’s output depends only on itself and on its
incoming edges

• Traverse the nodes and compute the output of each node,
given the already computed outputs of its predecessors

alj = σ
(∑

k

w l
jka

l−1
k + blj

)
Image taken from http://neuralnetworksanddeeplearning.com/chap2.html

http://neuralnetworksanddeeplearning.com/chap2.html

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Forward pass

• Computes the output of the network

• Each node’s output depends only on itself and on its
incoming edges

• Traverse the nodes and compute the output of each node,
given the already computed outputs of its predecessors

in vector terminology

al = σ
(
w lal−1 + bl

)
Image taken from http://neuralnetworksanddeeplearning.com/chap2.html

http://neuralnetworksanddeeplearning.com/chap2.html

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Forward pass

• Computes the output of the network

• Each node’s output depends only on itself and on its
incoming edges

• Traverse the nodes and compute the output of each node,
given the already computed outputs of its predecessors

in vector terminology

z l = w lal−1 + bl al = σ(z l)
Image taken from http://neuralnetworksanddeeplearning.com/chap2.html

http://neuralnetworksanddeeplearning.com/chap2.html

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Parameter update for a 1-layer network

• After a single forward pass, predict the output ŷ

• Compute the cost J (a single scalar value), given the
predicted ŷ and the ground truth y

• Take the derivative of the cost J w.r.t w and b

• Update w and b by a fraction (learning rate) of dw and db

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Parameter update for a 1-layer network

Forward pass:

Z = W>X + b
ŷ = A = σ(Z)

Use the chain rule:

dJ
dW = dJ

dA
dA
dZ

dZ
dW

dJ
db = dJ

dA
dA
dZ

dZ
db

Update w and b:

W = W − α dJ
dW

b = b − αdJ
db

Image taken from http://www.adeveloperdiary.com/data-science/machine-learning/

understand-and-implement-the-backpropagation-algorithm-from-scratch-in-python/

http://www.adeveloperdiary.com/data-science/machine-learning/understand-and-implement-the-backpropagation-algorithm-from-scratch-in-python/
http://www.adeveloperdiary.com/data-science/machine-learning/understand-and-implement-the-backpropagation-algorithm-from-scratch-in-python/

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Parameter update for a 2-layer network

Forward pass:

Z [1] = W [1]>X + b[1]

A[1] = σ(Z [1])

Z [2] = W [2]A[1] + b[2]

ŷ = A[2] = σ(Z [2])

Use the chain rule:

dW [2] = dJ
dW [2] = dJ

dA[2]
dA[2]

dZ [2]
dZ [2]

dW [2]

db[2] = dJ
db[2] = dJ

dA[2]
dA[2]

dZ [2]
dZ [2]

db[2]

dW [1] = dJ
dW [2] = dJ

dA[2]
dA[2]

dZ [2]
dZ [2]

dA[1]
dA[1]

dZ [1]
dZ [1]

dW [1]

db[1] = dJ
db[2] = dJ

dA[2]
dA[2]

dZ [2]
dZ [2]

dA[1]
dA[1]

dZ [1]
dZ [1]

db[1]

Update w and b:

W [1] = W [1]−α dJ
dW [1]

b[1] = b[1] − α dJ
db[1]

W [2] = W [2]−α dJ
dW [2]

b[2] = b[2] − α dJ
db[2]

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Training with SGD and backpropagation

• Randomly initialise parameters w and b

• For iteration 1 .. N; do
• predict ŷ based on w , b and x
• compute the loss (or cost) J
• find dJ

dW and dJ
db

• update w and b using dw and db

With increasing number of layers in the network:
computation complexity increases exponentially

⇒ use dynamic programming

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Training with SGD and backpropagation

• Backpropagation:
• efficient method for computing gradients in a directed

computation graph (e.g. a NN)
• implementation of chain rule of derivatives,
• allows us to compute all required partial derivatives in linear

time in terms of the graph size

• Stochastic Gradient Descent
• optimisation method, based on the analysis of the gradient of

the objective function

• Backpropagation is often used in combination with SGD

Gradient computation: backprop
Optimisation: SGD, Adam, Rprop, BFGS, ...

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Lecture slide from C. Manning, Stanford University (CS224n, Lecture 2)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent – Sup up

• To minimise J(θ) over the entire corpus:
compute gradients for all windows

• Updates for each element of θ

θnewj = θoldj − α∇θJ(θ)

• α step size (or learning rate)

Gradient descent is the most basic tool to minimise functions

• But: very inefficient for large corpora!
Instead: Update parameters after each window t

→ Stochastic gradient descent (SGD)

θnewj = θoldj − α∇θJt(θ)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram in a nutshell

• Train a simple neural network with a single hidden layer

• Throw away the network, only keep the learned weights of the
hidden layer ⇒ word embeddings

• Limitations of the model
• Normalisation factor is computationally expensive

p(o|c) =
exp(u>

o vc)

V∑
w=1

exp(u>w vc)

• Solution: Skipgram with negative sampling
(randomly sample “negative” instances from the copurs)

Skipgram – Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram in a nutshell

• Train a simple neural network with a single hidden layer

• Throw away the network, only keep the learned weights of the
hidden layer ⇒ word embeddings

• Limitations of the model
• Normalisation factor is computationally expensive

p(o|c) =
exp(u>

o vc)

V∑
w=1

exp(u>w vc)

• Solution: Skipgram with negative sampling
(randomly sample “negative” instances from the copurs)

	Skipgram – Intuition
	Gradient Descent
	Stochastic Gradient Descent
	Backpropagation

