Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Word2vec embeddings: CBOW and Skipgram

VL Embeddings
Uni Heidelberg

SS 2019

Skipgram — Intuition Gradient Descent

Die

Skipgram — Intuition

e Window size: 2
e Center word at position t: Maus

P(we—z|we) P(we—1|we) P(wepilwe) P(wepo|we)

kleine graue Maus friBt den leckeren
Wi—2 Wi—1 Wi Wi+t1 Wi2

Stochastic Gradient Descent Backpropagation

Kase

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent

Skipgram — Intuition

e Window size: 2

e Center word at position t: friBt

P(wi—o|we) P(we—1|we) P(wet1|we)

Die kleine graue Maus friBt den
Wi—2 Wi—1 Wi Wi+t1

Backpropagation

P(wei2|we)

leckeren
Wti2

Kase

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram — Intuition

e Window size: 2

e Center word at position t:

P(we—a|we) P(we—1|we) P(wega|we) P(weya|we)
Die kleine graue Maus friBt den leckeren Kase
Wi—2 Wi—1 Wi Wi+t1 Wi2

Same probability distribution used for all context words

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram — Objective function

For each position t =1, ..., T, predict context words within a
window of fixed size m, given center word w; .

Likelihood = LO =TI TI P(werjlwei0) (1)
j#0 What is 6?

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram — Objective function

For each position t =1, ..., T, predict context words within a
window of fixed size m, given center word w; .

t=1

Likelihood = LO =TI TI P(werjlwei0) (1)
—m<j<m
j#0

0: vector representations
of each word

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram — Objective function

For each position t =1, ..., T, predict context words within a
window of fixed size m, given center word w; .

;
Likelihood = LO)=T] TI P(wewjlwe:6) (1)
t=1 _'}‘éjém 0: vector representations

of each word

Objective function (cost function, loss function): Maximise the
probability of any context word given the current center word w;

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation
Skipgram — Objective function

For each position t =1, ..., T, predict context words within a
window of fixed size m, given center word w; .

;
Likelihood = LO)=T] TI P(wewjlwe:6) (1)
t=1 _'}‘éjém 0: vector representations

of each word

The objective function J(#) is the (average) negative log-likelihood:
J() = —7/og L(O) = —— Z > log P(weyjlwe) (2)

t=1 —m<j<m
Jj#0

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation
Skipgram — Objective function

For each position t =1, ..., T, predict context words within a
window of fixed size m, given center word w; .

;
Likelihood = LO)=T] TI P(wewjlwe:6) (1)
t=1 _'}‘éjém 0: vector representations

of each word

The objective function J(#) is the (average) negative log-likelihood:

J(@) = —7/Og L T E E /Og P Wt+j|Wt19) (2)
t=1 —m<j<m
J#0

Minimising objective function < maximising predictive accuracy

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Objective function — Motivation

e We want to model the probability distribution over mutually
exclusive classes
e measure the difference between predicted probabilities y and

ground-truth probabilities y
e during training: tune parameters so that this difference is

minimised

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent

Negative log-likelihood

Why is minimising the negative log likelihood equivalent to
maximum likelihood estimation (MLE)?

LO) =11 TII Pwesjlweo)

t=1 —m<j<m

MLE = argmax L(6, x)

Backpropagation

Skipgram — Intuition

Negative log-likelihood

Why is minimising the negative log likelihood equivalent to
maximum likelihood estimation (MLE)?

T

LO) =TT TI Pwesjlwe0)

t=1 —m<j<m

MLE = argmax L(6, x)

e The log allows us to convert a product of factors into a
summation of factors (nicer mathematical properties)

e arg max(x) is equivalent to arg min(—x)
X X

T
J(0) = —Flog L() = —+ Z Z log P(weyj|we; 6)

Skipgram — Intuition

Negative log-likelihood

e We can interpret negative log-probability as information
content or surprisal

What is the log-likelihood of a model, given an event?

=- The negative of the surprisal of the event, given the model:
A model is supported by an event to the extent that the event
is unsurprising, given the model.

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross entropy loss

Negative log likelihood is the same as cross entropy

Recap: Entropy

e If a discrete random variable X has the probability p(x), then
the entropy of X is

H(X) =Y p(x Viog 5 Zp x)log p(x

= expected number of bits needed to encode X if we use an
optimal coding scheme

Skipgram — Intuition

Cross entropy loss

Negative log likelihood is the same as cross entropy

Recap: Entropy

e If a discrete random variable X has the probability p(x), then
the entropy of X is

H(X) =Y p(x Viog 5 Zp x)log p(x

= expected number of bits needed to encode X if we use an
optimal coding scheme

Cross entropy

= number of bits needed to encode X if we use a suboptimal
coding scheme q(x) instead of p(x)

H(p, q) = ZP(X)/ogq(lx) ==Y p(x)log q(x)

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if p = q)

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if p = q)

Kullback-Leibler (KL) divergence: difference between
cross entropy and entropy

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if p = q)

Kullback-Leibler (KL) divergence: difference between
Cross entropy and entropy

KL(pllq) = Zp ZP(X)/ogp(lX) => p(x)lo plx)

X

= number of extra bits needed when using g(x) instead of p(x)
(also known as the relative entropy of p with respect to q)

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if p = q)

Kullback-Leibler (KL) divergence: difference between
cross entropy and entropy

KL(pllg) = S p(x)/ogq(lx)—z p(x)/ogp(lx) _ Zp(x),ogf;g;

X X

= number of extra bits needed when using g(x) instead of p(x)
(also known as the relative entropy of p with respect to q)

Cross entropy:

H(p,q) = —) _ p(x) log q(x) = H(p) + KL(pl|q)
xeX

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross entropy loss and Kullback-Leibler divergence

Cross entropy is always larger than entropy (exception: if p = q)

Kullback-Leibler (KL) divergence: difference between
cross entropy and entropy

KL(pllg) = S p(x)/ogq(lx)—z p(x)/ogp(lx) _ Zp(x),ogf;g;

X X

= number of extra bits needed when using g(x) instead of p(x)
(also known as the relative entropy of p with respect to q)

Cross entropy:

H(p,q) = —) _ p(x) log q(x) = H(p) + KL(pl|q)
xeX

Minimising H(p, g) — minimising the KL divergence from q to p

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross-entropy loss (or logistic loss)

e Use cross entropy to measure the difference between two
distributions p and q

e Use total cross entropy over all training examples as the loss
Lcross—entropy(p7 q) = - Z Pi/Og(qi)
i

= —log(qt) for hard classification
where g; is the correct class

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Cross-entropy loss (or logistic loss)

e Use cross entropy to measure the difference between two
distributions p and q

e Use total cross entropy over all training examples as the loss
Lcross—entropy(p7 q) = - Z Pi/Og(qi)
i

= —log(qt) for hard classification
where g; is the correct class

;
J(O) = —Flog L(O) =% > log P(weyjlwe; 0)
t=1 —m<j<m
j#0

Negative log-likelihood = cross entropy

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram — Objective function

We want to minimise the objective function:

Cross-entropy loss
1T

JWO)=—ZD. D log P(weijlwe:0) (2)

t=1 —m<j<m
J#0

e Question: How to calculate P(w;yj|we; 6) 7

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram — Objective function

We want to minimise the objective function:

Cross-entropy loss
1T

JWO)=—ZD. D log P(weijlwe:0) (2)

t=1 —m<j<m
J#0
e Question: How to calculate P(w;yj|we; 6) 7

e Answer: We will use two vectors per word w:

e v, when w is a center word
e u, when w is a context word

e Then for a center word ¢ and a context word o:

exp(ug ve)

Z eXp(U‘Z,-VC)

weV

P(olc) =

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram — Objective function

We want to minimise the objective function:

Cross-entropy loss
1T

JWO)=—ZD. D log P(weijlwe:0) (2)

t=1 —m<j<m
J#0
e Question: How to calculate P(w;yj|we; 6) 7

e Answer: We will use two vectors per word w:

e v, when w is a center word
e u, when w is a context word

e Then for a center word ¢ and a context word o:

exp(ug ve)

Z eXp(U‘Z,-VC)

weV
Take dot products between the two word vectors, put them in Softmax

P(olc) = (3)

Skipgram — Intuition

Recap: Dot products

e Measure of similarity (well, kind of...)

e Bigger if v and v are more similar
(if vectors point in the same direction)

n
UTV:U-V: E ujv;
i=1

o lteratingover w=1...W :u)v
= work out how similar each word is to v
exp(ug ve)

P(olc) = -
> explulve)

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Softmax function

Standard mapping from RY to a probability distribution

Exponentiate to
make positive

Normalise to
get probability

e Softmax function maps arbitrary values x; to a probability
distribution p;

e max because amplifies probability of largest x;
e soft because still assigns some probability to smaller x;

This gives us a probability estimate p(w;_1|wt)

Skipgram — Intuition

Difference Sigmoid Function — Softmax

Sigmoid Function
e binary classification in
logistic regression
e sum of probabilities not
necessarily 1

e activation function

Softmax Function
e multi-classification in
logistic regression

e sum of probabilities
will be 1

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Why two representations for each word?

e We create two representations for each word in the corpus:

1. w as a context word
2. w as a center word

e Easier to compute — we can optimise vectors separately

e Also works better in practice...

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram — Predict the label

Dot product compares similarity of o and ¢
Larger dot product = larger probability

exp(ug ve)

Z eXp(UI ve)

weV

p(olc) = (6)

After taking exponent,
normalise over entire vocab

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram — Predict the label

Dot product compares similarity of o and ¢
Larger dot product = larger probability

.
p(o|c) = _exp(up ve) (6)

S ewlunv)

weV

After taking exponent,
normalise over entire vocab

e For training the model, compute for all words in the corpus:

-
J(9) = —%Z Z log P(wgyj|we; 6)

t=1 —m<j<m
0

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram — Training the model

e Recall: 6 represents all model parameters, in one long vector

e For d-dimensional vectors and V-many words:

Vaas

Vamaranth

0 — Vzoo c R2dV (7)

Uaas

Uameise

L Uzoo
e Remember: every word has two vectors = 2d

e We now optimise the parameters 6

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent

Skipgram — Training the model

Generative model: predict the context for a given center word
e We have an objective function:

!
JO)==3>" > log P(weyjlwe)

t=1 —m<j<m

e We want to minimise the negative log-likelihood
(maximise the probability we predict)
exp(ug ve)

S ewlugv)

wevV

e Probability distribution: p(o|c) =

e How do we know how to change the parameters
(i.e. the word vectors)?

Backpropagation

Skipgram — Intuition

Skipgram — Training the model

Generative model: predict the context for a given center word
e We have an objective function:

!
JO)==3>" > log P(weyjlwe)

t=1 —m<j<m

e We want to minimise the negative log-likelihood
(maximise the probability we predict)
exp(ug ve)

S explu, v

wevV

e Probability distribution: p(o|c) =

e How do we know how to change the parameters
(i.e. the word vectors)? — Use the gradient

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Minimising the objective function

We want to optimise (maximise or minimise) our objective function

e How do we know how to change the parameters?

Use the gradient

e Gradient VJ(0) of a function gives direction of steepest ascent

e Gradient Descent is an algorithm to minimise J(6)

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent — Intuition

e |dea:

e for a current value of 0, calculate gradient of J(6)

e then take a small step in the direction of the
negative gradient

e repeat

Cost
A

Learning step

Minimum

\
@

Random
initial value

D>

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent

Gradient Descent — Intuition

e Find local minimum for a given cost function

e at each step, GD tells us in which direction to move
to lower the cost

3

error

- ® -
minimum parameter

e No guarantee that we find the best global solution!

Backpropagation

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent — Intuition

e How do we know the direction?

e Best guess: move in the direction of the slope (gradient)
of the cost function

error

—@ L 4 ——
minimum parameter

e Arrows: gradient of the cost function at different points

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent — Intuition

e Gradient of a function
e vector that points in the direction of the steepest ascent

e Gradient is deeply connected to its derivative
e Derivative f’ of a function
e a single number that indicates how fast the function is rising
when moving in the direction of its gradient
e f'(p): value of f" at point p
e f'(p) > 0= fis going up
e f'(p) < 0= fis going down
e f'(p) =0= fis flat

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient-Based Optimisation
Given some function y = f(x) with x,y € R

e We want to optimise (maximise or minimise) it by updating x

minyerf(x)

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent

Gradient-Based Optimisation
Given some function y = f(x) with x,y € R

o minyerf(x)

Six) /\ Jix)

X =

Backpropagation

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent

Gradient-Based Optimisation
Given some function y = f(x) with x,y € R

o minyerf(x)

Six)

The derivative of

dfix the function f(x)
ﬂ) evaluated at x=a
dx | x=a gives the slope of

é‘ the curve at x=a.

Jix)

Backpropagation

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient-Based Optimisation

Given some function y = f(x) with x,y € R

e the derivative f'(x) of this function is %

e gives the slope of f(x) at point x

= tells us how to change x
to make a small improvement in y:

x;i = xj—1 — af'(x;) « = step size or learning rate

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent

Gradient-Based Optimisation

Given some function y = f(x) with x,y € R

e the derivative f'(x) of this function is %

e gives the slope of f(x) at point x

= tells us how to change x
to make a small improvement in y:

Backpropagation

x;i = xj—1 — af'(x;) « = step size or learning rate

e Gradient Descent: reduce f(x) by moving x in small steps

with the opposite sign of the derivative

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent

Gradient-Based Optimisation

Given some function y = f(x) with x,y € R

e the derivative f'(x) of this function is %

e gives the slope of f(x) at point x

= tells us how to change x
to make a small improvement in y:

Backpropagation

x;i = xj—1 — af'(x;) « = step size or learning rate

e Gradient Descent: reduce f(x) by moving x in small steps

with the opposite sign of the derivative

What if we have functions with multiple inputs?

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent with multiple inputs

e We can use partial derivatives %f(x)

e measures how f changes as only x; increases at point x

e Gradient of f:

e gives direction of steepest ascent V,f(x)
e vector containing all partial derivatives for f(x)

e Element / of the gradient V is the partial derivative of f
with respect to x;

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent with multiple inputs

e We can use partial derivatives %f(x)

e measures how f changes as only x; increases at point x

e Gradient of f:

e gives direction of steepest ascent V,f(x)
e vector containing all partial derivatives for f(x)

e Element / of the gradient V is the partial derivative of f
with respect to x;

Which direction should we step to decrease the function?

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent with multiple inputs

e We can use partial derivatives %f(x)

e measures how f changes as only x; increases at point x

e Gradient of f:

e gives direction of steepest ascent V,f(x)
e vector containing all partial derivatives for f(x)

e Element / of the gradient V is the partial derivative of f
with respect to x;

Which direction should we step to decrease the function?

e Gradient descent algorithm:

e compute V,f(x)
e take small step in —V,f(x) direction
e repeat

Gradient Descent

Gradient Descent with multiple inputs

e We can use partial derivatives %f(x)

e measures how f changes as only x; increases at point x

e Gradient of f:

e gives direction of steepest ascent V,f(x)
e vector containing all partial derivatives for f(x)

e Element / of the gradient V is the partial derivative of f
with respect to x;

Which direction should we step to decrease the function?

e Gradient descent algorithm:

e compute V,f(x)
e take small step in —V,f(x) direction
e repeat

e Minimise f by applying small updates to x: x’ = x — aVf(x)

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent with multiple inputs

Critical points in 2D (one input value):

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

Ideally, we would like
to arrive at the global
minimum, but this

might not be possible.

f(z)

This local minimum performs
poorly and should be avoided.

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent

Gradient Descent with multiple inputs

Critical points in 3D:

N A7 YN
A0S

i,
Lol
%

NI RNS
(NN
OSSN 7 9, BN

7
2,
<>

Global Minima

Saddle Point - & =

Backpropagation

it
N
yel
Q

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent with multiple inputs

e Update equation (in matrix notation):

grew = 69 — a4 J(0)

« = step size or learning rate

e Update equation (for a single parameter):

J(9)

gnew — gold _ aaold

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent with multiple inputs

e Problem: J(0) is a function of all windows in the corpus
(extremely large!)

e So VyJ(0) is very expensive to compute
= Takes too long for a single update!

e Solution: Stochastic Gradient Descent
o Repeatedly sample windows and update after each one

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

Goal: find parameters 6 that reduce cost function J(6)

Algorithm 1 Pseudocode for SGD

1:

e
= O

Qe Na R e

Input:
— function f(x; 6)

— training set of inputs xi,..., X, and gold outputs y, ...

— loss function J

while stopping criteria not met do
Sample a training example x;, y;
Compute the loss J(f(xi; 0), yi)
V « gradients of J(f(x;; 0),y:) w.r.t. 0
Update 0 <+ 6 — aV

end while

. return 6

»Yn

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

Goal: find parameters 6 that reduce cost function J(0)

e Impact of learning rate «:

e too low — learning proceeds slowly
e initial a too low — learning may become stuck with high cost

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

Goal: find parameters 6 that reduce cost function J(0)

e Important property of SGD (and related minibatch or online
gradient-based optimization)
e computation time per update does not grow with increasing
number of training examples

Skipgram — Intuition

Stochastic Gradient Descent (SGD)

Gradient Descent

Wo
w1
w2

W19.998
W19.999
W20.000

Stochastic Gradient Descent

Backpropagation

Skipgram — Intuition

—VJ(0) =

Stochastic Gradient Descent (SGD)

Gradient Descent

Wo
w1
w2

W19.998
W19.999
W20.000

0.31
0.03
—-1.25

0.78
—0.37
0.16

Stochastic Gradient Descent

Backpropagation

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

_ wo
wy
w2
0= :
W19.998
W19.999
| W20.000 |
[0.31] wp should increase
0.03 wy should increase a little
—-1.25 ws> should decrease a lot
-VJ(9) = : :
0.78 Wi9.99g Should increase a lot
—-0.37 Wi9.999 Should decrease
| 0.16 | Waog.000 Should increase a little

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

wo
wy
w2
0= :
W19.998
W19.999
| W20.000 |
[0.31] wp should increase
0.03 wy should increase a little
—-1.25 ws> should decrease a lot
-VJ(9) = : :
0.78 Wi9.99g Should increase a lot
—0.37 Wi9.099 Should decrease
| 0.16 | Waog.000 Should increase a little

Average over all training data
Encodes the relative importance of each weight

Backpropagation

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

Make a forward pass through the network to compute
the output

Take the output that the network predicts

Take the output that it should predict
Compute the total cost of the network J(6)

Propagate the error back through the network

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

Make a forward pass through the network to compute
the output

Take the output that the network predicts

Take the output that it should predict

Compute the total cost of the network J(0)

Propagate the error back through the network

= Backpropagation

e procedure to compute the gradient of the cost function:

Compute the partial derivatives aé]—&f) and aé—(:) of the cost function

J(0) with respect to any weight w or bias b in the network.

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Stochastic Gradient Descent (SGD)

Make a forward pass through the network to compute
the output

Take the output that the network predicts

Take the output that it should predict

Compute the total cost of the network J(0)

Propagate the error back through the network

= Backpropagation

e procedure to compute the gradient of the cost function:

How do we have to change the weights and biases
in order to change the cost?

Backpropagation

Parameter initialisation

o Before we start training the network we have to initialise the
parameters
e Why not use zero as initial values?
e Not a good idea, outputs will be the same for all nodes
e |nstead, use small random numbers, e.g.:
e use normally distributed values around zero N(0, 0.1)
e use Xavier initialisation (Glorot and Bengio 2010)
e for debugging: use fixed random seeds
e Now let's start the training:
e predict labels
e compute loss
e update parameters

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Forward pass

e Computes the output of the network

e Each node’s output depends only on itself and on its
incoming edges

e Traverse the nodes and compute the output of each node,
given the already computed outputs of its predecessors

layer 1 layer 2 layer 3

u‘jk is the weight from the k*" neuron
in the (I —1)*® layer to the j** neuron

in the I'" layer

Image taken from http://neuralnetworksanddeeplearning.com/chap2.html

http://neuralnetworksanddeeplearning.com/chap2.html

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Forward pass

e Computes the output of the network

e Each node’s output depends only on itself and on its
incoming edges

e Traverse the nodes and compute the output of each node,
given the already computed outputs of its predecessors

layer 1 layer 2 layer 3

“‘5;‘- is the weight from the k*" neuron
in the (I —1)** layer to the j** neuron
in the I'* layer

I I -1 /
k

Image taken from http://neuralnetworksanddeeplearning.com/chap2.html

http://neuralnetworksanddeeplearning.com/chap2.html

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Forward pass

e Computes the output of the network

e Each node’s output depends only on itself and on its
incoming edges

e Traverse the nodes and compute the output of each node,
given the already computed outputs of its predecessors

layer 1 layer 2 layer 3

u‘ﬁk is the weight from the k*" neuron
in the (I — 1) layer to the j** neuron

in the I'" layer

in vector terminology
5 = O_(Wlal—l + b’)

Image taken from http://neuralnetworksanddeeplearning.com/chap2.html

http://neuralnetworksanddeeplearning.com/chap2.html

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Forward pass

e Computes the output of the network

e Each node’s output depends only on itself and on its
incoming edges

e Traverse the nodes and compute the output of each node,
given the already computed outputs of its predecessors

layer 1 layer 2 layer 3

u‘ﬁk is the weight from the k*" neuron
in the (I — 1) layer to the j** neuron

in the I'" layer

in vector terminology
Z=wlad=t 4+ b & =o(Z)

Image taken from http://neuralnetworksanddeeplearning.com/chap2.html

http://neuralnetworksanddeeplearning.com/chap2.html

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Parameter update for a 1-layer network

After a single forward pass, predict the output y

Compute the cost J (a single scalar value), given the
predicted ¥ and the ground truth y

Take the derivative of the cost J w.r.t w and b

Update w and b by a fraction (learning rate) of dw and db

B <— K>

function

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Parameter update for a 1-layer network

Forward pass: Use the chain rule: Update w and b:
Z-Wixeb | fh-$ish | W-w-od
y=A=0(2) dJ _ dJ dA dZ b=b—af

db — dAdZ db

X1

function
Image taken from http://www.adeveloperdiary.com/data-science/machine-learning/

understand-and-implement-the-backpropagation-algorithm-from-scratch-in-python/

http://www.adeveloperdiary.com/data-science/machine-learning/understand-and-implement-the-backpropagation-algorithm-from-scratch-in-python/
http://www.adeveloperdiary.com/data-science/machine-learning/understand-and-implement-the-backpropagation-algorithm-from-scratch-in-python/

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Parameter update for a 2-layer network

Forward pass: Use the chain rule:
2] _ dJ __ dJ dAP¥ qzP
20— wiitx 4y | W= G = G e e
dJ dJ dAP gz
Al = o (ZIM) dbl?l = S = Zimn Gom g

ZI2 — WAl 4 pld | gl = _d) . _dJ dAP! gz galll gzl

— dwlBl T dARI dzP] dAl dz[0 awil

p= Al = o (2P 1 _ dJ _ _dJ dA? 4z gal 4zIV
Y (Z7) dblt = o = Jor 20T G Sz e
dz;
i 4 Update w and b:
1
11 _ it dJ
Wil = witl — o_di
Y dJ
1] 1
Y | bl = pli] - a4y

T | WE = wel—agi,

cost [] []
functi 2] _ 2 dJ
et b = b « B2

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Training with SGD and backpropagation

e Randomly initialise parameters w and b
e For iteration 1 .. N: do

predict y based on w, b and x
compute the loss (or cost) J

-4 d) dJ

find 57 and 5 .

update w and b using dw and db

With increasing number of layers in the network:
computation complexity increases exponentially

= use dynamic programming

Backpropagation

Training with SGD and backpropagation

e Backpropagation:
o efficient method for computing gradients in a directed
computation graph (e.g. a NN)
e implementation of chain rule of derivatives,
e allows us to compute all required partial derivatives in linear
time in terms of the graph size
e Stochastic Gradient Descent

e optimisation method, based on the analysis of the gradient of
the objective function

e Backpropagation is often used in combination with SGD

Gradient computation: backprop
Optimisation: SGD, Adam, Rprop, BFGS, ...

g k i‘o 3r\qnq WV, softaas (uV)

Vy1 Uxl

l' 1
“2 0.8
3 § ey, 62
bl | [ESES [U)
dxV dx1 [+ e
" 0.09
w vc 0. &7#
=Wy, ’ |
= Bl > 0.9 W‘_’
. L o3
il 1> B 03 A
- A4l - = A :‘: %]
sl 11y 3
- 035~ - 0.5 M
s X!
i | l
ks wp o7
N g We-)
column o JL o2
d embeddin L2l
Wwir
maélrix oS 3 Q‘T"\j 2.3
.0

g wovd

rep ritatal ion Ao
’

£ waler wivd *Qf"s’:\ "

o Lecture slide from C. Manning, Stanford University (CS224n, Lecture 2)

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Gradient Descent — Sup up

e To minimise J(#) over the entire corpus:
compute gradients for all windows

e Updates for each element of 0

grew = 69 — av7,J(6)

e « step size (or learning rate)

Gradient descent is the most basic tool to minimise functions

e But: very inefficient for large corporal
Instead: Update parameters after each window t

— Stochastic gradient descent (SGD)

orew = 091 — a Vg, (0)

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram in a nutshell

e Train a simple neural network with a single hidden layer

e Throw away the network, only keep the learned weights of the
hidden layer = word embeddings

Skipgram — Intuition Gradient Descent Stochastic Gradient Descent Backpropagation

Skipgram in a nutshell

e Train a simple neural network with a single hidden layer

e Throw away the network, only keep the learned weights of the
hidden layer = word embeddings

e Limitations of the model
e Normalisation factor is computationally expensive

exp(u, ve)
Vv
-
Z exp(u,, vc)
w=1

e Solution: Skipgram with negative sampling
(randomly sample “negative” instances from the copurs)

p(ole) =

	Skipgram – Intuition
	Gradient Descent
	Stochastic Gradient Descent
	Backpropagation

