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The SkipGram model

• Objective: Find word representations that are useful for
predicting the surrounding words in a sentence or a document

• More formally:

− 1

T

T∑
t=1

∑
−m≤j≤m,j 6=0

log p(wt+1|wt) (1)

where p(wo |wc) =
exp(v>wo vwc )∑V
j=1 exp(v>j vwc )

Softmax

• All parameters need to be updated at every step

• Impractical: cost of computing p(wo |wc) is
proportional to V



Hierarchical Softmax

Computationally efficient approximation of the full softmax

• First introduced by Morin and Bengio (2005)

• Instead of evaluating V output nodes, we evaluate only
log2(V ) nodes

• How does it work?
• binary tree representation of output layer where all words in

vocab V are leaf nodes
• for each node, represent the relative probabilities of its

child nodes
• random walk that assigns probabilities to words



Hierarchical Softmax

Binary tree representation of output layer where all words in vocab
V are leaf nodes



Hierarchical Softmax

For each node, represent the relative probabilities of its child nodes:
transition probabilities to the children are given by the proportions
of total probability mass in the subtree of its left- vs its right child



Hierarchical Softmax

Relative probabilities define a random walk that assigns
probabilities to leaf nodes (words)



Hierarchical Softmax

• Probability for each word is result of a sequence of binary
decisions

• For example

p(time|C ) = Pn0(left|C )Pn1(right|C )Pn2(left|C )

where Pn(right|C ) is the probability of choosing the right
child when transitioning from node n

• There are only 2 outcomes, therefore

Pn(right|C ) = 1− Pn(left|C )



Hierarchical Softmax

But where does the tree come from?

• Different approaches in the literature:

• Morin and Bengio (2005)
• binary tree based on the IS-A relation in WordNet

• Mnih and Hinton (2009)
• boot-strapping method: hierarchical language model with a

simple feature-based algorithm for automatic construction of
word trees from data

• Mikolov et al. (2013)
• Huffman tree
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Hierarchical Softmax

Huffman trees (Mikolov et al. 2013)

• often used for loss-less data compression (Huffman 1952)

• minimise expected path length from root to leaf
⇒ thereby minimising the expected number of parameter updates

Hierarchical softmax reduces number of parameters from V to log2(V )

Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/
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Hierarchical Softmax

• Each word w can be reached by a path from the root node

• Average L(w) is log(V )

• Assigns short codes to frequent words → fast training

Old
p(wo |wc) =

exp(v>wo
vwc )∑V

j=1 exp(v>j vwc )
(2)

• two representations (vwc , vwo ) for each word w

New
p(w |wc) =

L(w)−1∏
j=1

σ(v ′n(w ,j)
>vwc ) (3)

• one representation for each word w and for each inner node v ′n
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Hierarchical Softmax

p(w |wc) =

L(w)−1∏
j=1

σ(v ′n(w ,j)
>vwc ) (3)

V∑
w=1

p(w |wc) = 1 (4)

⇒ implies that the cost of computing log p(wo |wc) and
∇log p(wo |wc) is proportional to L(wo), which, on average,
is log(V )
Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/


Hierarchical Softmax – Sum-up

• Problem with Softmax:
• cost of computing p(wo |wc) is proportional to V

• Solution: Hierarchical Softmax

• computationally efficient approximation of full Softmax
• word2vec uses Huffman trees to implement Hierarchical

Softmax
• other tree representations are also possible (see Morin &

Bengio 2005, Mnih & Hinton 2009)



Negative Sampling

Can we do better?

• Instead of summarising over all contexts in the corpus, create
artificial negative samples

Goal: sample context words vo that are unlikely to occur with vc

• Generate the set of random (vc , vo) pairs, assuming they are
all incorrect ⇒ randomly sampled negative examples



Skip-Gram with Negative Sampling

• Given a pair (vc , vo) of word and context
• p(D = 1|vc , vo) if (vc , vo) ∈ D

• p(D = 0|vc , vo) = 1− p(D = 1|vc , vo) if (vc , vo) 6∈ D

• Goal: find parameters θ that maximise the probability that all
of the observed pairs are from D:

argmaxθ
∏

(vc ,vo)∈D

p(D = 1|vc , vo ; θ) =

argmaxθ
∑

(vc ,vo)∈D

log p(D = 1|vc , vo ; θ)
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Skip-Gram with Negative Sampling (II)

• We can define p(D = 1|vo , vc ; θ):

p(D = 1|vc , vo ; θ) = 1
1+e−vo ·vc sigmoid function

• This gives us the objective:

argmaxvc ,vo
∑

(vc ,vo)∈D

log
1

1 + e−vo ·vc

• Training objective with negative sampling:

argmaxvc ,vo

( ∏
(vc ,vo)∈D

p(D = 1|vo , vc)
∏

(vc ,vo)∈D′
p(D = 0|vo , vc)

)
=

argmaxvc ,vo

( ∑
(vc ,vo)∈D

log σ(vo · vc) +
∑

(vc ,vo)∈D′
log σ(−vo · vc)

)
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Skip-Gram with Negative Sampling (III)

• Online training using Stochastic Gradient Descent

J(θ) = 1
T

T∑
t=1

Jt(θ)

Jt(θ) = log σ(v>o vc) +
k∑

i=1

Ewi∼Pn(w)[log σ(−v>wi
vc)]

maximise probability of
seen word pairs

minimise probability of
unseen word pairs
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Skip-Gram with Negative Sampling (IV)

How to generate the samples?

• For each (vc , vo) ∈ D generate n samples (vc , vo1 ), . . . , (vc , von)
where

• n is a hyperparameter
• each voj is drawn according to its unigram distribution

raised to the 3/4 power P(w) = U(w)
3
4 /Z

(causes less frequent words to be sampled more often)

⇒ observed word pairs will have similar embeddings
⇒ unobserved word pairs will be scattered in space
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Skip-Gram with Negative Sampling (IV)

How many samples? Impact of sample size k

• 2 functions of k :

1. better estimate of distribution of negative examples:
higher k means more data and better estimation

2. k acts as a prior on the probability of observing positive
examples: higher k → negative examples more probable



Subsampling of frequent words

• In large corpora: Zipfian distribution

• few words with very high frequency
• many words with very low frequency

• Counter the imbalance between rare and frequent words
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• high-frequency words often provide less information
than less frequent words:

France is the capital of Paris

France, capital → more informative than the, of

• Counter the imbalance between rare and frequent words
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Subsampling of frequent words

• Simple subsampling approach:
• Discard word wi in the training set with probability

P(wi ) = 1−
√

t

f (wi )
(5)

where f (wi ) is the frequency of word wi

and t is a threshold (typically around 10−5)

• Subsampling accelerates learning and significantly improves
accuracy of embeddings for rare words
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Sum-up: Extensions to the Skipgram model

Mikolov et al. (2013): Distributed Representations of Words and
Phrases and their Compositionality

• More efficient training

• Higher quality word vectors

• Training with negative sampling results in faster training
and better vector representations for frequent words

• Subsampling of frequent words improves training speed and
accuracy for rare words

• Extension from word-based to phrase vectors
(→ session on compositionality)
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