Extensions to the Skipgram Model

VL Embeddings

Uni Heidelberg

SS 2019

The SkipGram model

e Objective: Find word representations that are useful for
predicting the surrounding words in a sentence or a document

e More formally:

;

1

-7 Z log p(wii1|wt) (1)
=1 —m<j<m,j£0

-
where P(WO‘WC) _ stp(VWOVWC)

Softmax
j=1 exp(VJT Vi)

o All parameters need to be updated at every step

e Impractical: cost of computing p(w,|w.) is
proportional to V

Hierarchical Softmax

Computationally efficient approximation of the full softmax

e First introduced by Morin and Bengio (2005)

o Instead of evaluating V output nodes, we evaluate only
loga (V') nodes

e How does it work?

e binary tree representation of output layer where all words in
vocab V are leaf nodes

e for each node, represent the relative probabilities of its
child nodes

e random walk that assigns probabilities to words

Hierarchical Softmax

i a8, 5 8
\tﬂfp c‘é.\y% ‘i'\s ® ég g g«- ;;%’
(03) (o) (025) (%) @) () ©b2) (o

Binary tree representation of output layer where all words in vocab
V are leaf nodes

Hierarchical Softmax

03“!/\0.14\

B =
\§ﬁg&\&*§-ﬁg§$§

For each node, represent the relative probabilities of its child nodes:
transition probabilities to the children are given by the proportions
of total probability mass in the subtree of its left- vs its right child

Hierarchical Softmax

((m)w;c(m) 025) ™) () (O ©2) (s.09

Relative probabilities define a random walk that assigns
probabilities to leaf nodes (words)

Hierarchical Softmax

Probability for each word is result of a sequence of binary
decisions

For example
p(time|C) = Py, (left| C) Py, (right| C)Pp,(left|C)

where P,(right|C) is the probability of choosing the right
child when transitioning from node n

There are only 2 outcomes, therefore

P,(right|C) = 1 — Pp(left|C)

Hierarchical Softmax

But where does the tree come from?

o Different approaches in the literature:

e Morin and Bengio (2005)
e binary tree based on the IS-A relation in WordNet

e Mnih and Hinton (2009)
® boot-strapping method: hierarchical language model with a
simple feature-based algorithm for automatic construction of
word trees from data
e Mikolov et al. (2013)
e Huffman tree

Hierarchical Softmax

But where does the tree come from?

o Different approaches in the literature:

e Morin and Bengio (2005)
e binary tree based on the IS-A relation in WordNet

e Mnih and Hinton (2009)
® boot-strapping method: hierarchical language model with a
simple feature-based algorithm for automatic construction of
word trees from data
e Mikolov et al. (2013)

e Huffman tree

Hierarchical Softmax

Huffman trees (Mikolov et al. 2013)

e often used for loss-less data compression (Huffman 1952)

e minimise expected path length from root to leaf
= thereby minimising the expected number of parameter updates

Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/

Hierarchical Softmax

Huffman trees (Mikolov et al. 2013)

e often used for loss-less data compression (Huffman 1952)

e minimise expected path length from root to leaf
= thereby minimising the expected number of parameter updates

word count
fat 3
fridge 2
zebra 1
potato 3 .
and 14
in 7
today 4
kangaroo 2

Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/

Hierarchical Softmax

Huffman trees (Mikolov et al. 2013)

e often used for loss-less data compression (Huffman 1952)

e minimise expected path length from root to leaf
= thereby minimising the expected number of parameter updates

word count
fat 3 p HuBlman Yree.
fridge 2 ’
zebra 1
potato 3 N in
and 14 ey
in 7 %An/u Jak pénts
today 4
kangaroo 2 2 g

Hierarchical softmax reduces number of parameters from V to loga(V)
Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/

Hierarchical Softmax

e Each word w can be reached by a path from the root node
e Average L(w) is log(V)

e Assigns short codes to frequent words — fast training

Old eXp(v\/\—/ro VWC)

p(Wo|Wc) =
Z}/zl eXp(VJT VWC)

New L(w)-1

Hierarchical Softmax

e Each word w can be reached by a path from the root node
e Average L(w) is log(V)

e Assigns short codes to frequent words — fast training

Old eXp(VM—/FO VWC)

p(Wo|Wc) =
Z}/zl eXp(VJT VWC)

e two representations (v, vy,) for each word w

New L(w)-1

p(wlwe) = H U(V;y(wJ)TVWc) (3)

j=1

e one representation for each word w and for each inner node v/,

Hierarchical Softmax

L(w)-1

p(wlwe) = H U(V,/,(wJ)TVwc)
j=1

054
H 0.

IEeRsE)
o

=N
NN

a 1)
(029 (o) ©3) 0% @) (9 02) (9

Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/

Hierarchical Softmax

L(w)-1
T
p(wlwe) = H U(V,/,(wJ) V)
j=1
hn(\'cr'me, 1)
n(time, 2) 0.5 3

n, 0.35

th(time, 3)

054
H 0.

JECRNERY]
o
==
==
|

2|
A § F
(029 7o) () %) @) 69 ©2) (9

Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/

Hierarchical Softmax

L(w)—1
pwiwe) = T o(viuwy) viw) (3)
j=1
v
S p(wlwe) = 1 (4)
w=1

= implies that the cost of computing log p(w,|w.) and
Viog p(wo|w) is proportional to L(w,), which, on average,
is log(V)

Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/

Hierarchical Softmax — Sum-up

e Problem with Softmax:

e cost of computing p(w,|w,) is proportional to V

e Solution: Hierarchical Softmax

e computationally efficient approximation of full Softmax

e word2vec uses Huffman trees to implement Hierarchical
Softmax

e other tree representations are also possible (see Morin &
Bengio 2005, Mnih & Hinton 2009)

Negative Sampling

Can we do better?

e Instead of summarising over all contexts in the corpus, create
artificial negative samples

Goal: sample context words v, that are unlikely to occur with v,

e Generate the set of random (v, v,) pairs, assuming they are
all incorrect = randomly sampled negative examples

Skip-Gram with Negative Sampling

e Given a pair (v, v,) of word and context
e p(D =1|v, v,) if (ve,vo) €D

Skip-Gram with Negative Sampling

e Given a pair (v, v,) of word and context
e p(D =1|v, v,) if (ve,vo) €D
e p(D=0|ve,vo) =1—p(D=1|v, o) if (ve,vo) €D

Skip-Gram with Negative Sampling

e Given a pair (v, v,) of word and context
e p(D =1|v, v,) if (ve,vo) €D
e p(D=0|ve,vo) =1—p(D=1|v, o) if (ve,vo) €D

e Goal: find parameters 6 that maximise the probability that all
of the observed pairs are from D:

argmaxy H p(D = 1|ve,vo;0) =
(Ve,vo)ED

Skip-Gram with Negative Sampling

e Given a pair (v, v,) of word and context
e p(D =1|v, v,) if (ve,vo) €D
e p(D=0|ve,vo) =1—p(D=1|v, o) if (ve,vo) €D

e Goal: find parameters 6 that maximise the probability that all
of the observed pairs are from D:

argmaxy H p(D = 1|ve,vo;0) =
(Ve,vo)ED

argmaxp Z log p(D = 1|vc, vo; 0)
(VC7VO)€D

Skip-Gram with Negative Sampling (I1)

e We can define p(D = 1|vo, v¢; 0):

p(D = 1|ve, vo; 0) = sigmoid function

1
Ite Vo

Skip-Gram with Negative Sampling (I1)

e We can define p(D = 1|vo, v¢; 0):

p(D = 1|ve, vo; 0) = sigmoid function

1
Ite vove
e This gives us the objective:

1

argmaxy, v, Z log Tre—veve

(VC)VO)GD

Skip-Gram with Negative Sampling (I1)

e We can define p(D = 1|vo, v¢; 0):

p(D = 1|ve, vo; 0) = sigmoid function

1
Ite vove
e This gives us the objective:

1

argmaxy, v, Z log Tre—veve

(Ve,vo)ED

e Training objective with negative sampling:

argmaxvmvo(H p(D = 1|v,, vc) H p(D = 0|vo, vc)) =
(ve,vo0)ED (ve,vo)ED’

Skip-Gram with Negative Sampling (I1)

e We can define p(D = 1|vo, v¢; 0):

p(D = 1|ve, vo; 0) = sigmoid function

1
Ite vove
e This gives us the objective:

1

argmaxy, v, Z log Tre—veve

(Ve,vo)ED

e Training objective with negative sampling:
argmaxvmvo(H p(D = 1|v,, vc) H p(D = 0|vo, vc)) =

(ve,vo)€ED (ve,vo)eD!

argmaxvc’vo(Z log o(vo - ve) + Z log o(—v, - vc))

(VmVo)ED (VC7V0)€D/

Skip-Gram with Negative Sampling (lII)

e Online training using Stochastic Gradient Descent
T
JO) =+ 4(0)
t=1

k
Jt(o) = log J(V;I—Vc) + Z]EW,'NPn(W)[IOg U(_V;Vc)]

i=1

Skip-Gram with Negative Sampling (lII)

e Online training using Stochastic Gradient Descent
T
JO) =+ 4(0)
t=1

k
Jt(g) = log J(Vz;r Vc) + Z]EW,'NPn(W)[/Og 0-(_V|/|—/|—,-VC)]
i=1
maximise probability of minimise probability of
seen word pairs unseen word pairs

Skip-Gram with Negative Sampling (V)

How to generate the samples?

Skip-Gram with Negative Sampling (V)

How to generate the samples?

e For each (v, v,) € D generate n samples (v, Vo,), - - -, (Ve, Vo,)
where

e nis a hyperparameter

e each v, is drawn according to its unigram distribution
raised to the 3/4 power P(w) = U(w)?/Z
(causes less frequent words to be sampled more often)

Skip-Gram with Negative Sampling (V)

How to generate the samples?

e For each (vc, v,) € D generate n samples (v¢, Vo,), - - -, (Ve, Vo,)
where

e nis a hyperparameter

e each v, is drawn according to its unigram distribution
raised to the 3/4 power P(w) = U(w)?/Z
(causes less frequent words to be sampled more often)

observed word pairs will have similar embeddings
unobserved word pairs will be scattered in space

4

Skip-Gram with Negative Sampling (V)

How many samples? Impact of sample size k
e 2 functions of k:

1. better estimate of distribution of negative examples:
higher k means more data and better estimation

2. k acts as a prior on the probability of observing positive
examples: higher k — negative examples more probable

Subsampling of frequent words

e In large corpora: Zipfian distribution

e few words with very high frequency
e many words with very low frequency

16000
14000
12000
10000
8000
6000
4000
2000

Subsampling of frequent words

e In large corpora: Zipfian distribution

e few words with very high frequency
e many words with very low frequency

e high-frequency words often provide less information
than less frequent words:

France is the capital of Paris

France, capital — more informative than the, of

Subsampling of frequent words

e In large corpora: Zipfian distribution

e few words with very high frequency
e many words with very low frequency

e high-frequency words often provide less information
than less frequent words:

France is the capital of Paris

France, capital — more informative than the, of

e Counter the imbalance between rare and frequent words

Subsampling of frequent words

e Simple subsampling approach:
e Discard word w; in the training set with probability

_t
f(w;)

where f(w;) is the frequency of word w;
and t is a threshold (typically around 1075)

P(W,') =1-

Subsampling of frequent words

e Simple subsampling approach:
e Discard word w; in the training set with probability

_t
f(w;)

where f(w;) is the frequency of word w;
and t is a threshold (typically around 1075)

P(W,') =1-

e Subsampling accelerates learning and significantly improves
accuracy of embeddings for rare words

Sum-up: Extensions to the Skipgram model

Mikolov et al. (2013): Distributed Representations of Words and
Phrases and their Compositionality

e More efficient training
e Higher quality word vectors

e Training with negative sampling results in faster training
and better vector representations for frequent words

e Subsampling of frequent words improves training speed and
accuracy for rare words

e Extension from word-based to phrase vectors
(— session on compositionality)

References

Frederic Morin and Yoshua Bengio (2005): Hierarchical probabilistic neural network language model. In
Proceedings of the international workshop on artificial intelligence and statistics, pages 246-252.

Yoav Goldberg & Omer Levy (2014): word2vec Explained: Deriving Mikolov et al.’s Negative-Sampling
Word-Embedding Method. https://arxiv.org/pdf/1402.3722

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado and Jeffrey Dean (2013): Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781

Tomas Mikolov, llya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean (2013): Distributed
representations of words and phrases and their compositionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages 3111-3119.

Andriy Mnih and Geoffrey E. Hinton (2009): A scalable hierarchical distributed language model. Advances
in neural information processing systems, 21:1081-1088.

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Janvin (2003): A neural probabilistic
language model. The Journal of Machine Learning Research, 3:1137-1155.

Ronan Collobert and Jason Weston (2008): A unified architecture for natural language processing: deep
neural networks with multitask learning. In Proceedings of the 25th international conference on Machine
learning, pages 160-167. ACM.

https://arxiv.org/pdf/1402.3722

