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The SkipGram model

e Objective: Find word representations that are useful for
predicting the surrounding words in a sentence or a document

e More formally:
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Softmax
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o All parameters need to be updated at every step

e Impractical: cost of computing p(w,|w.) is
proportional to V



Hierarchical Softmax

Computationally efficient approximation of the full softmax

e First introduced by Morin and Bengio (2005)

o Instead of evaluating V output nodes, we evaluate only
loga (V') nodes

e How does it work?

e binary tree representation of output layer where all words in
vocab V are leaf nodes

e for each node, represent the relative probabilities of its
child nodes

e random walk that assigns probabilities to words



Hierarchical Softmax

i a8, 5 8
\tﬂfp c‘é.\y% ‘i'\s ® ég g g«- ;;%’
(03) (o) (025) (%) @) () ©b2) (o

Binary tree representation of output layer where all words in vocab
V are leaf nodes



Hierarchical Softmax
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For each node, represent the relative probabilities of its child nodes:
transition probabilities to the children are given by the proportions
of total probability mass in the subtree of its left- vs its right child
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Relative probabilities define a random walk that assigns
probabilities to leaf nodes (words)



Hierarchical Softmax

Probability for each word is result of a sequence of binary
decisions

For example
p(time|C) = Py, (left| C) Py, (right| C)Pp,(left|C)

where P,(right|C) is the probability of choosing the right
child when transitioning from node n

There are only 2 outcomes, therefore

P,(right|C) = 1 — Pp(left|C)



Hierarchical Softmax

But where does the tree come from?

o Different approaches in the literature:

e Morin and Bengio (2005)
e binary tree based on the IS-A relation in WordNet

e Mnih and Hinton (2009)
® boot-strapping method: hierarchical language model with a
simple feature-based algorithm for automatic construction of
word trees from data
e Mikolov et al. (2013)
e Huffman tree
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Hierarchical Softmax

Huffman trees (Mikolov et al. 2013)

e often used for loss-less data compression (Huffman 1952)

e minimise expected path length from root to leaf
= thereby minimising the expected number of parameter updates

Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/
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Huffman trees (Mikolov et al. 2013)
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Hierarchical Softmax

Huffman trees (Mikolov et al. 2013)

e often used for loss-less data compression (Huffman 1952)

e minimise expected path length from root to leaf
= thereby minimising the expected number of parameter updates
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Hierarchical softmax reduces number of parameters from V to loga(V)
Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/
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Hierarchical Softmax

e Each word w can be reached by a path from the root node
e Average L(w) is log(V)

e Assigns short codes to frequent words — fast training

Old eXp( v\/\—/ro VWC )

p(Wo|Wc) =
Z}/zl eXp(VJT VWC)

New L(w)-1



Hierarchical Softmax

e Each word w can be reached by a path from the root node
e Average L(w) is log(V)

e Assigns short codes to frequent words — fast training

Old eXp( VM—/FO VWC )

p(Wo|Wc) =
Z}/zl eXp(VJT VWC)

e two representations (v, vy, ) for each word w

New L(w)-1

p(wlwe) = H U(V;y(wJ)TVWc) (3)

j=1

e one representation for each word w and for each inner node v/,



Hierarchical Softmax

L(w)-1

p(wlwe) = H U(V,/,(wJ)TVwc)
j=1
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Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/
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Hierarchical Softmax
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Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/
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Hierarchical Softmax

L(w)—1
pwiwe) = T o(viuwy)  viw) (3)
j=1
v
S p(wlwe) = 1 (4)
w=1

= implies that the cost of computing log p(w,|w.) and
Viog p(wo|w) is proportional to L(w,), which, on average,
is log(V)

Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/
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Hierarchical Softmax — Sum-up

e Problem with Softmax:

e cost of computing p(w,|w,) is proportional to V

e Solution: Hierarchical Softmax

e computationally efficient approximation of full Softmax

e word2vec uses Huffman trees to implement Hierarchical
Softmax

e other tree representations are also possible (see Morin &
Bengio 2005, Mnih & Hinton 2009)



Negative Sampling

Can we do better?

e Instead of summarising over all contexts in the corpus, create
artificial negative samples

Goal: sample context words v, that are unlikely to occur with v,

e Generate the set of random (v, v,) pairs, assuming they are
all incorrect = randomly sampled negative examples



Skip-Gram with Negative Sampling

e Given a pair (v, v,) of word and context
e p(D =1|v, v,) if (ve,vo) €D
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Skip-Gram with Negative Sampling

e Given a pair (v, v,) of word and context
e p(D =1|v, v,) if (ve,vo) €D
e p(D=0|ve,vo) =1—p(D=1|v, o) if (ve,vo) €D

e Goal: find parameters 6 that maximise the probability that all
of the observed pairs are from D:

argmaxy H p(D = 1|ve,vo;0) =
(Ve,vo)ED

argmaxp Z log p(D = 1|vc, vo; 0)
(VC7VO)€D



Skip-Gram with Negative Sampling (I1)
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Skip-Gram with Negative Sampling (I1)

e We can define p(D = 1|vo, v¢; 0):

p(D = 1|ve, vo; 0) = sigmoid function

1
Ite vove
e This gives us the objective:

1

argmaxy, v, Z log Tre—veve

(Ve,vo)ED

e Training objective with negative sampling:
argmaxvmvo( H p(D = 1|v,, vc) H p(D = 0|vo, vc)) =

(ve,vo)€ED (ve,vo)eD!

argmaxvc’vo( Z log o(vo - ve) + Z log o(—v, - vc))

(VmVo)ED (VC7V0)€D/



Skip-Gram with Negative Sampling (lII)

e Online training using Stochastic Gradient Descent
T
JO) =+ 4(0)
t=1

k
Jt(o) = log J(V;I—Vc) + Z]EW,'NPn(W)[IOg U(_V;Vc)]

i=1



Skip-Gram with Negative Sampling (lII)

e Online training using Stochastic Gradient Descent
T
JO) =+ 4(0)
t=1

k
Jt(g) = log J(Vz;r Vc) + Z]EW,'NPn(W)[/Og 0-(_V|/|—/|—,-VC)]
i=1
maximise probability of minimise probability of
seen word pairs unseen word pairs



Skip-Gram with Negative Sampling (V)

How to generate the samples?
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How to generate the samples?

e For each (v, v,) € D generate n samples (v, Vo,), - - -, (Ve, Vo,)
where

e nis a hyperparameter

e each v, is drawn according to its unigram distribution
raised to the 3/4 power  P(w) = U(w)?/Z
(causes less frequent words to be sampled more often)



Skip-Gram with Negative Sampling (V)

How to generate the samples?

e For each (vc, v,) € D generate n samples (v¢, Vo, ), - - -, (Ve, Vo,)
where

e nis a hyperparameter

e each v, is drawn according to its unigram distribution
raised to the 3/4 power  P(w) = U(w)?/Z
(causes less frequent words to be sampled more often)

observed word pairs will have similar embeddings
unobserved word pairs will be scattered in space

4



Skip-Gram with Negative Sampling (V)

How many samples? Impact of sample size k
e 2 functions of k:

1. better estimate of distribution of negative examples:
higher k means more data and better estimation

2. k acts as a prior on the probability of observing positive
examples: higher k — negative examples more probable



Subsampling of frequent words

e In large corpora: Zipfian distribution

e few words with very high frequency
e many words with very low frequency
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Subsampling of frequent words

e In large corpora: Zipfian distribution

e few words with very high frequency
e many words with very low frequency

e high-frequency words often provide less information
than less frequent words:

France is the capital of Paris

France, capital — more informative than the, of

e Counter the imbalance between rare and frequent words



Subsampling of frequent words

e Simple subsampling approach:
e Discard word w; in the training set with probability
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f(w;)

where f(w;) is the frequency of word w;
and t is a threshold (typically around 1075)

P(W,') =1-



Subsampling of frequent words

e Simple subsampling approach:
e Discard word w; in the training set with probability

_t
f(w;)

where f(w;) is the frequency of word w;
and t is a threshold (typically around 1075)

P(W,') =1-

e Subsampling accelerates learning and significantly improves
accuracy of embeddings for rare words



Sum-up: Extensions to the Skipgram model

Mikolov et al. (2013): Distributed Representations of Words and
Phrases and their Compositionality

e More efficient training
e Higher quality word vectors

e Training with negative sampling results in faster training
and better vector representations for frequent words

e Subsampling of frequent words improves training speed and
accuracy for rare words

e Extension from word-based to phrase vectors
(— session on compositionality)
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