
Extensions to the Skipgram Model

VL Embeddings

Uni Heidelberg

SS 2019

The SkipGram model

• Objective: Find word representations that are useful for
predicting the surrounding words in a sentence or a document

• More formally:

− 1

T

T∑
t=1

∑
−m≤j≤m,j 6=0

log p(wt+1|wt) (1)

where p(wo |wc) =
exp(v>wo vwc)∑V
j=1 exp(v>j vwc)

Softmax

• All parameters need to be updated at every step

• Impractical: cost of computing p(wo |wc) is
proportional to V

Hierarchical Softmax

Computationally efficient approximation of the full softmax

• First introduced by Morin and Bengio (2005)

• Instead of evaluating V output nodes, we evaluate only
log2(V) nodes

• How does it work?
• binary tree representation of output layer where all words in

vocab V are leaf nodes
• for each node, represent the relative probabilities of its

child nodes
• random walk that assigns probabilities to words

Hierarchical Softmax

Binary tree representation of output layer where all words in vocab
V are leaf nodes

Hierarchical Softmax

For each node, represent the relative probabilities of its child nodes:
transition probabilities to the children are given by the proportions
of total probability mass in the subtree of its left- vs its right child

Hierarchical Softmax

Relative probabilities define a random walk that assigns
probabilities to leaf nodes (words)

Hierarchical Softmax

• Probability for each word is result of a sequence of binary
decisions

• For example

p(time|C) = Pn0(left|C)Pn1(right|C)Pn2(left|C)

where Pn(right|C) is the probability of choosing the right
child when transitioning from node n

• There are only 2 outcomes, therefore

Pn(right|C) = 1− Pn(left|C)

Hierarchical Softmax

But where does the tree come from?

• Different approaches in the literature:

• Morin and Bengio (2005)
• binary tree based on the IS-A relation in WordNet

• Mnih and Hinton (2009)
• boot-strapping method: hierarchical language model with a

simple feature-based algorithm for automatic construction of
word trees from data

• Mikolov et al. (2013)
• Huffman tree

Hierarchical Softmax

But where does the tree come from?

• Different approaches in the literature:

• Morin and Bengio (2005)
• binary tree based on the IS-A relation in WordNet

• Mnih and Hinton (2009)
• boot-strapping method: hierarchical language model with a

simple feature-based algorithm for automatic construction of
word trees from data

• Mikolov et al. (2013)
• Huffman tree

Hierarchical Softmax

Huffman trees (Mikolov et al. 2013)

• often used for loss-less data compression (Huffman 1952)

• minimise expected path length from root to leaf
⇒ thereby minimising the expected number of parameter updates

Hierarchical softmax reduces number of parameters from V to log2(V)

Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/

Hierarchical Softmax

Huffman trees (Mikolov et al. 2013)

• often used for loss-less data compression (Huffman 1952)

• minimise expected path length from root to leaf
⇒ thereby minimising the expected number of parameter updates

Hierarchical softmax reduces number of parameters from V to log2(V)

Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/

Hierarchical Softmax

Huffman trees (Mikolov et al. 2013)

• often used for loss-less data compression (Huffman 1952)

• minimise expected path length from root to leaf
⇒ thereby minimising the expected number of parameter updates

Hierarchical softmax reduces number of parameters from V to log2(V)
Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/

Hierarchical Softmax

• Each word w can be reached by a path from the root node

• Average L(w) is log(V)

• Assigns short codes to frequent words → fast training

Old
p(wo |wc) =

exp(v>wo
vwc)∑V

j=1 exp(v>j vwc)
(2)

• two representations (vwc , vwo) for each word w

New
p(w |wc) =

L(w)−1∏
j=1

σ(v ′n(w ,j)
>vwc) (3)

• one representation for each word w and for each inner node v ′n

Hierarchical Softmax

• Each word w can be reached by a path from the root node

• Average L(w) is log(V)

• Assigns short codes to frequent words → fast training

Old
p(wo |wc) =

exp(v>wo
vwc)∑V

j=1 exp(v>j vwc)
(2)

• two representations (vwc , vwo) for each word w

New
p(w |wc) =

L(w)−1∏
j=1

σ(v ′n(w ,j)
>vwc) (3)

• one representation for each word w and for each inner node v ′n

Hierarchical Softmax

p(w |wc) =

L(w)−1∏
j=1

σ(v ′n(w ,j)
>vwc) (3)

Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/

Hierarchical Softmax

p(w |wc) =

L(w)−1∏
j=1

σ(v ′n(w ,j)
>vwc) (3)

Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/

Hierarchical Softmax

p(w |wc) =

L(w)−1∏
j=1

σ(v ′n(w ,j)
>vwc) (3)

V∑
w=1

p(w |wc) = 1 (4)

⇒ implies that the cost of computing log p(wo |wc) and
∇log p(wo |wc) is proportional to L(wo), which, on average,
is log(V)
Image from http://building-babylon.net/2017/08/01/hierarchical-softmax/

http://building-babylon.net/2017/08/01/hierarchical-softmax/

Hierarchical Softmax – Sum-up

• Problem with Softmax:
• cost of computing p(wo |wc) is proportional to V

• Solution: Hierarchical Softmax

• computationally efficient approximation of full Softmax
• word2vec uses Huffman trees to implement Hierarchical

Softmax
• other tree representations are also possible (see Morin &

Bengio 2005, Mnih & Hinton 2009)

Negative Sampling

Can we do better?

• Instead of summarising over all contexts in the corpus, create
artificial negative samples

Goal: sample context words vo that are unlikely to occur with vc

• Generate the set of random (vc , vo) pairs, assuming they are
all incorrect ⇒ randomly sampled negative examples

Skip-Gram with Negative Sampling

• Given a pair (vc , vo) of word and context
• p(D = 1|vc , vo) if (vc , vo) ∈ D

• p(D = 0|vc , vo) = 1− p(D = 1|vc , vo) if (vc , vo) 6∈ D

• Goal: find parameters θ that maximise the probability that all
of the observed pairs are from D:

argmaxθ
∏

(vc ,vo)∈D

p(D = 1|vc , vo ; θ) =

argmaxθ
∑

(vc ,vo)∈D

log p(D = 1|vc , vo ; θ)

Skip-Gram with Negative Sampling

• Given a pair (vc , vo) of word and context
• p(D = 1|vc , vo) if (vc , vo) ∈ D
• p(D = 0|vc , vo) = 1− p(D = 1|vc , vo) if (vc , vo) 6∈ D

• Goal: find parameters θ that maximise the probability that all
of the observed pairs are from D:

argmaxθ
∏

(vc ,vo)∈D

p(D = 1|vc , vo ; θ) =

argmaxθ
∑

(vc ,vo)∈D

log p(D = 1|vc , vo ; θ)

Skip-Gram with Negative Sampling

• Given a pair (vc , vo) of word and context
• p(D = 1|vc , vo) if (vc , vo) ∈ D
• p(D = 0|vc , vo) = 1− p(D = 1|vc , vo) if (vc , vo) 6∈ D

• Goal: find parameters θ that maximise the probability that all
of the observed pairs are from D:

argmaxθ
∏

(vc ,vo)∈D

p(D = 1|vc , vo ; θ) =

argmaxθ
∑

(vc ,vo)∈D

log p(D = 1|vc , vo ; θ)

Skip-Gram with Negative Sampling

• Given a pair (vc , vo) of word and context
• p(D = 1|vc , vo) if (vc , vo) ∈ D
• p(D = 0|vc , vo) = 1− p(D = 1|vc , vo) if (vc , vo) 6∈ D

• Goal: find parameters θ that maximise the probability that all
of the observed pairs are from D:

argmaxθ
∏

(vc ,vo)∈D

p(D = 1|vc , vo ; θ) =

argmaxθ
∑

(vc ,vo)∈D

log p(D = 1|vc , vo ; θ)

Skip-Gram with Negative Sampling (II)

• We can define p(D = 1|vo , vc ; θ):

p(D = 1|vc , vo ; θ) = 1
1+e−vo ·vc sigmoid function

• This gives us the objective:

argmaxvc ,vo
∑

(vc ,vo)∈D

log
1

1 + e−vo ·vc

• Training objective with negative sampling:

argmaxvc ,vo

(∏
(vc ,vo)∈D

p(D = 1|vo , vc)
∏

(vc ,vo)∈D′
p(D = 0|vo , vc)

)
=

argmaxvc ,vo

(∑
(vc ,vo)∈D

log σ(vo · vc) +
∑

(vc ,vo)∈D′
log σ(−vo · vc)

)

Skip-Gram with Negative Sampling (II)

• We can define p(D = 1|vo , vc ; θ):

p(D = 1|vc , vo ; θ) = 1
1+e−vo ·vc sigmoid function

• This gives us the objective:

argmaxvc ,vo
∑

(vc ,vo)∈D

log
1

1 + e−vo ·vc

• Training objective with negative sampling:

argmaxvc ,vo

(∏
(vc ,vo)∈D

p(D = 1|vo , vc)
∏

(vc ,vo)∈D′
p(D = 0|vo , vc)

)
=

argmaxvc ,vo

(∑
(vc ,vo)∈D

log σ(vo · vc) +
∑

(vc ,vo)∈D′
log σ(−vo · vc)

)

Skip-Gram with Negative Sampling (II)

• We can define p(D = 1|vo , vc ; θ):

p(D = 1|vc , vo ; θ) = 1
1+e−vo ·vc sigmoid function

• This gives us the objective:

argmaxvc ,vo
∑

(vc ,vo)∈D

log
1

1 + e−vo ·vc

• Training objective with negative sampling:

argmaxvc ,vo

(∏
(vc ,vo)∈D

p(D = 1|vo , vc)
∏

(vc ,vo)∈D′
p(D = 0|vo , vc)

)
=

argmaxvc ,vo

(∑
(vc ,vo)∈D

log σ(vo · vc) +
∑

(vc ,vo)∈D′
log σ(−vo · vc)

)

Skip-Gram with Negative Sampling (II)

• We can define p(D = 1|vo , vc ; θ):

p(D = 1|vc , vo ; θ) = 1
1+e−vo ·vc sigmoid function

• This gives us the objective:

argmaxvc ,vo
∑

(vc ,vo)∈D

log
1

1 + e−vo ·vc

• Training objective with negative sampling:

argmaxvc ,vo

(∏
(vc ,vo)∈D

p(D = 1|vo , vc)
∏

(vc ,vo)∈D′
p(D = 0|vo , vc)

)
=

argmaxvc ,vo

(∑
(vc ,vo)∈D

log σ(vo · vc) +
∑

(vc ,vo)∈D′
log σ(−vo · vc)

)

Skip-Gram with Negative Sampling (III)

• Online training using Stochastic Gradient Descent

J(θ) = 1
T

T∑
t=1

Jt(θ)

Jt(θ) = log σ(v>o vc) +
k∑

i=1

Ewi∼Pn(w)[log σ(−v>wi
vc)]

maximise probability of
seen word pairs

minimise probability of
unseen word pairs

Skip-Gram with Negative Sampling (III)

• Online training using Stochastic Gradient Descent

J(θ) = 1
T

T∑
t=1

Jt(θ)

Jt(θ) = log σ(v>o vc) +
k∑

i=1

Ewi∼Pn(w)[log σ(−v>wi
vc)]

maximise probability of
seen word pairs

minimise probability of
unseen word pairs

Skip-Gram with Negative Sampling (IV)

How to generate the samples?

• For each (vc , vo) ∈ D generate n samples (vc , vo1), . . . , (vc , von)
where

• n is a hyperparameter
• each voj is drawn according to its unigram distribution

raised to the 3/4 power P(w) = U(w)
3
4 /Z

(causes less frequent words to be sampled more often)

⇒ observed word pairs will have similar embeddings
⇒ unobserved word pairs will be scattered in space

Skip-Gram with Negative Sampling (IV)

How to generate the samples?

• For each (vc , vo) ∈ D generate n samples (vc , vo1), . . . , (vc , von)
where

• n is a hyperparameter
• each voj is drawn according to its unigram distribution

raised to the 3/4 power P(w) = U(w)
3
4 /Z

(causes less frequent words to be sampled more often)

⇒ observed word pairs will have similar embeddings
⇒ unobserved word pairs will be scattered in space

Skip-Gram with Negative Sampling (IV)

How to generate the samples?

• For each (vc , vo) ∈ D generate n samples (vc , vo1), . . . , (vc , von)
where

• n is a hyperparameter
• each voj is drawn according to its unigram distribution

raised to the 3/4 power P(w) = U(w)
3
4 /Z

(causes less frequent words to be sampled more often)

⇒ observed word pairs will have similar embeddings
⇒ unobserved word pairs will be scattered in space

Skip-Gram with Negative Sampling (IV)

How many samples? Impact of sample size k

• 2 functions of k :

1. better estimate of distribution of negative examples:
higher k means more data and better estimation

2. k acts as a prior on the probability of observing positive
examples: higher k → negative examples more probable

Subsampling of frequent words

• In large corpora: Zipfian distribution

• few words with very high frequency
• many words with very low frequency

• Counter the imbalance between rare and frequent words

Subsampling of frequent words

• In large corpora: Zipfian distribution

• few words with very high frequency
• many words with very low frequency

• high-frequency words often provide less information
than less frequent words:

France is the capital of Paris

France, capital → more informative than the, of

• Counter the imbalance between rare and frequent words

Subsampling of frequent words

• In large corpora: Zipfian distribution

• few words with very high frequency
• many words with very low frequency

• high-frequency words often provide less information
than less frequent words:

France is the capital of Paris

France, capital → more informative than the, of

• Counter the imbalance between rare and frequent words

Subsampling of frequent words

• Simple subsampling approach:
• Discard word wi in the training set with probability

P(wi) = 1−
√

t

f (wi)
(5)

where f (wi) is the frequency of word wi

and t is a threshold (typically around 10−5)

• Subsampling accelerates learning and significantly improves
accuracy of embeddings for rare words

Subsampling of frequent words

• Simple subsampling approach:
• Discard word wi in the training set with probability

P(wi) = 1−
√

t

f (wi)
(5)

where f (wi) is the frequency of word wi

and t is a threshold (typically around 10−5)

• Subsampling accelerates learning and significantly improves
accuracy of embeddings for rare words

Sum-up: Extensions to the Skipgram model

Mikolov et al. (2013): Distributed Representations of Words and
Phrases and their Compositionality

• More efficient training

• Higher quality word vectors

• Training with negative sampling results in faster training
and better vector representations for frequent words

• Subsampling of frequent words improves training speed and
accuracy for rare words

• Extension from word-based to phrase vectors
(→ session on compositionality)

References

• Frederic Morin and Yoshua Bengio (2005): Hierarchical probabilistic neural network language model. In
Proceedings of the international workshop on artificial intelligence and statistics, pages 246–252.

• Yoav Goldberg & Omer Levy (2014): word2vec Explained: Deriving Mikolov et al.’s Negative-Sampling
Word-Embedding Method. https://arxiv.org/pdf/1402.3722

• Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado and Jeffrey Dean (2013): Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781

• Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean (2013): Distributed
representations of words and phrases and their compositionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages 3111–3119.

• Andriy Mnih and Geoffrey E. Hinton (2009): A scalable hierarchical distributed language model. Advances
in neural information processing systems, 21:1081–1088.

• Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Janvin (2003): A neural probabilistic
language model. The Journal of Machine Learning Research, 3:1137–1155.

• Ronan Collobert and Jason Weston (2008): A unified architecture for natural language processing: deep
neural networks with multitask learning. In Proceedings of the 25th international conference on Machine
learning, pages 160–167. ACM.

https://arxiv.org/pdf/1402.3722

