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Motivation - Homonyms

excerpt of WordNet search for ’bank’

WordNet search for ’vector’
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Recap: homographs, homonyms

Homographs
Two words that have the same spelling but different meanings
ex.: bass, close, minute, ...

Homonyms
Two words that have the same spelling and pronunciation but
different meanings
ex.: bat, just, patient, ...
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POS tags

Same spelling but different POS tag and meaning:
I beat (n.) - to beat so. (v.)
I bear (n.) - to bear sth. (v.)
I light (n.) - light (adj.)
I bark (n.) - to bark (v.)

More on that later!
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Motivation - global context

I Apple is a kind of fruit.
I Apple releases its new ipads.

I Basalt is the commonest volcanic rock.
I Rock is the music of teenage rebellion.

from: Li & Jurafsky, 2015
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Motivation - global context

How similar are ...

1. mouse - cat
2. mouse - keyboard
3. cat - keyboard

Context
... changes meaning of a word
... changes which meaning of a word comes to mind
... provides topical information
... should be taken into account when creating embeddings!
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Motivation

I different word senses so far not represented in vector space
I worst case: embedding doesn’t capture any sense well
I homonomy and context dependency: wide-spread
I word senses in datasets?
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Training Objective

Given

Input: A word sequence s, document d
Output: correct last word in s

Ranking Cost (Collobert & Weston, 2008)

Cs,d =
∑
w ∈V

max(0, 1− g(s, d) + g(sw , d)) (1)

g(·, ·): scoring function sw : s with last word replaced by word w

g(s, d) should be larger than g(sw , d) by a margin of 1
⇒ minimize ranking loss for each (s, d) found in corpus
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Neural Network Architecture
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Local Context

Local score preserves word order and syntactic information.

Input: ordered list of vectors x = (x1, x2, . . . , xm)

Output:

a1 = f (W1[x1; x2; . . . ; xm] + b1) (2)
score l = W2a1 + b2 (3)

* a neural network with one hidden layer
I [x1; x2; . . . ; xm]: Concatenation of m word embeddings representing s

I xi : a column in embedding matrix L ∈ Rn×|V |, |V |: size of the vocabulary
I f : element-wise activation function
I a1 ∈ Rh×1: activation of hidden layer with h hidden nodes
I W1 ∈ Rh×(mn), W2 ∈ R1×h: first, second layer weights
I b1, b2: biases of each layer
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Global Context

Global score captures more of the semantics and topics of the
document (similar to bag-of-words features).

Input: document as an ordered list of word embeddings
d = (d1, d2, . . . , dk)

Output:
a
(g)
1 = f (W

(g)
1 [c ; xm] + b

(g)
1 ) (4)

scoreg = W
(g)
2 a

(g)
1 + b

(g)
2 (5)

* a two-layer neural network
I [c ; xm]: Concatenation of weighted average document vector and

vector of last word in s

I a
(g)
1 ∈ Rh(g)×1: activation of hidden layer with h(g) hidden nodes

I W
(g)
1 ∈ Rh(g)×(2n), W (g)

2 ∈ R1×h(g) : first, second layer weights

I b
(g)
1 , b(g)2 : biases of each layer
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Global Context

Weighted average of all word vectors in document

c =

∑k
i=1 w(ti )di∑k
i=1 w(ti )

(6)

w(·): weighting function that captures importance of word ti in
document
here: idf-weighting

18 / 53



Introduction Global Context Model Multi-Prototype Model Experiments Evaluation (Li & Jurafsky 2015) Discussion References

Final Score

score = scorel + scoreg (7)
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Learning

I Randomly choose a word from dictionary as corrupt example
for each sequence-document pair (s, d) to sample gradient of
the objective

I Take derivative of ranking loss with respect to parameters:
I weights of the neural network: updated via backpropagation
I embedding matrix L: word representations
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Motivation

I Words have multiple meanings
I Single-prototype models represent only one representation for

each word
⇒ can not capture different meanings

I Representation of one of the meanings is influenced by all
meanings of the word

I Using all contexts of a homonymous or polysemous word to
build a single prototype
⇒ none of the meanings is well represented

−→ Multi-prototype model uses multiple representations to capture
different senses and usages of a word. (Reisinger and Mooney,
2010b)
−→ Idea: Learned single-prototype embeddings to represent each
context window, then clustered to perform word sense
discrimination (Schütze, 1998)

21 / 53



Introduction Global Context Model Multi-Prototype Model Experiments Evaluation (Li & Jurafsky 2015) Discussion References

Motivation

I Words have multiple meanings
I Single-prototype models represent only one representation for

each word
⇒ can not capture different meanings

I Representation of one of the meanings is influenced by all
meanings of the word

I Using all contexts of a homonymous or polysemous word to
build a single prototype
⇒ none of the meanings is well represented

−→ Multi-prototype model uses multiple representations to capture
different senses and usages of a word. (Reisinger and Mooney,
2010b)
−→ Idea: Learned single-prototype embeddings to represent each
context window, then clustered to perform word sense
discrimination (Schütze, 1998)

22 / 53



Introduction Global Context Model Multi-Prototype Model Experiments Evaluation (Li & Jurafsky 2015) Discussion References

Motivation

I Words have multiple meanings
I Single-prototype models represent only one representation for

each word
⇒ can not capture different meanings

I Representation of one of the meanings is influenced by all
meanings of the word

I Using all contexts of a homonymous or polysemous word to
build a single prototype
⇒ none of the meanings is well represented

−→ Multi-prototype model uses multiple representations to capture
different senses and usages of a word. (Reisinger and Mooney,
2010b)

−→ Idea: Learned single-prototype embeddings to represent each
context window, then clustered to perform word sense
discrimination (Schütze, 1998)

23 / 53



Introduction Global Context Model Multi-Prototype Model Experiments Evaluation (Li & Jurafsky 2015) Discussion References

Motivation

I Words have multiple meanings
I Single-prototype models represent only one representation for

each word
⇒ can not capture different meanings

I Representation of one of the meanings is influenced by all
meanings of the word

I Using all contexts of a homonymous or polysemous word to
build a single prototype
⇒ none of the meanings is well represented

−→ Multi-prototype model uses multiple representations to capture
different senses and usages of a word. (Reisinger and Mooney,
2010b)
−→ Idea: Learned single-prototype embeddings to represent each
context window, then clustered to perform word sense
discrimination (Schütze, 1998)

24 / 53



Introduction Global Context Model Multi-Prototype Model Experiments Evaluation (Li & Jurafsky 2015) Discussion References

Learning multiple prototypes
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Words similarity in multi-prototype model
(Reisinger and Mooney, 2010b)

« AvgSimC corresponds to soft cluster assignment, weighting each similarity
term in AvgSim by the likelihood of the word contexts appearing in their
respective clusters»

AvgSimC (w ,w ′) =
1
K 2

K∑
i=1

K∑
j=1

p(c ,w , i) p(c ′,w ′, j) d(µi (w), µj(w
′))

(8)
I K : number of clusters
I p(c ,w , i): likelihood that word w is in its cluster i given

context c
I µi (w): vector representing i-th cluster centroid of w
I d(v , v ′): similarity between two vectors, any of the distance

functions (Curran 2004)
⇒ Can be computed with or without context
(assuming uniform p(c ,w , i) over i −→ AvgSim)
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Setup

I Corpus: April 2010 snapshot of Wikipedia corpus (Shaoul and
Westbury, 2010), total 2 million articles and 990 million tokens

I Dictionary of 30,000 most frequent words in Wikipedia in
lower case

I Preprocessing:
I Map rare words not found in dictionary to an UNKNOWN

token
I Hyperparameters:

I 10-words window size of local context
I 10 prototypes (for multi-prototype variants, K = 10)
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Qualitative Evaluations

Table 1: Nearest neighbors of words based on cosine similarity
(C&W model - Model using single prototype approach)

Compared with results of C&W model (Collobert and Weston,
2008)

I Less constrained by syntax, singular and plural forms of a word
are similar in meaning

I More semantic
28 / 53
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Qualitative Evaluations

Table 2: Nearest neighbors of words based learned by the model using
the multi-prototype approach based on cosine similarity

The clustering can find different meanings, usages and parts of
speech of the words
⇒ can group different contexts of a word in different groups
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WordSim-353 (Finkelstein et al., 2001)

Table 3: Spearman’s ρ correlation on WordSim-353
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WordSim-353 (Finkelstein et al., 2001)

I Higher correlation (64.2) than using either local (C&W : 55.3)
or global context (Our Model-g : 22.8) alone

I Removing stop words improved correlation (Our Model* :
71.3 > 64.2 )

I Still lower than state-of-the-art-results
(71.3 < 73.4 < 75 < 76.9)
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Stanford Contextual Word Similarity (SCWS)

Problems with WordSim-353?

I tiger - tiger has a similarity of 10
I similarity has been assigned in isolation
I small dataset, only nouns, ...

Word 1 Word 2

Located downtown along the east bank
of the Des Moines River ...

This is the basis of all money laundering ...

... and Andy ’s getting ready to pack
his bags and head up to Los Angeles ...

... defends the house against another
pack of zombies ...
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Dataset Construction
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Evaluation on SCWS

Table 4: Spearman’s ρ correlation on new dataset.

AvgSim: similarity from each prototype equally considered
AvgSimC: weighted similarity based on context
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Evaluation of model

I Outperformed C&W’s model and state-of-the-art-results
I Multi-prototype model improved performance without using

context
I context improves performance even further
I lower scores overall (task is harder)
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Evaluation on real-world NLU tasks

I ’Do Multi-Sense Embeddings Improve Natural Language
Understanding?’ (2015)

I Li & Jurafsky compare performance of multi-sense vectors on
different tasks

I use their own model + SkipGram vectors as baseline
I we take a look at general trends and findings
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Results - excerpt

SkipGram 50d L&J 50d SG 100d L&J +
global context 100d SG 300d

Named Entity
Recognition (CoNLL-2003)

0.852 0.854 0.867 0.871 0.882

POS-Tagging
(WSJ)

0.925 0.938 0.940 0.952 0.954

Sentence-level Sentiment
Classification(IMDb, Pang et. al)

0.750 0.750 0.768 0.763 0.774

Semantic Relationship
Classification (SemEval-2010)

0.748 0.762 0.770 0.778 0.798

Sentence Semantic
Relatedness (SICK, LSTM Model)

0.843 0.846 0.850 0.854 0.850

Accuracy as reported for different tasks in Li & Jurafsky. L&J denotes Li
& Jurafsky’s Expectation model, L&J + global context is the
Expectation model that also takes global context into account.
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Trends

I global context always outperforms 50d SkipGram vectors
I ... however 100d vectors always outperform 50d vectors
I increasing dimensionality often equivalent to training with

complex model
I many tasks do not profit from word sense disambiguation

I Named Entity Recognition
I Sentiment Analysis

I POS-Tagging and Semantic Relationship Classification
improved (kind of)

I when using state-of-the-art models: no impact
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Conclusion

I sense disambiguation only helpful in very specific tasks
I similar or better results are often achieved with better models

and/or higher dimensionality
I more sophisticated models have knowledge about multiple

word senses (cf. lecture ’Uncovering information’)
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Discussion

I questions?
I expectation vs reality?
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