Improving Word Representations via Global Context and Multiple Word Prototypes (Huang et al. 2012)

#### Dang Hoang Dung Nguyen, Jennifer Mell

Ruprecht-Karls-Universität Heidelberg

Seminar: Embeddings

Dozenten: Prof. Dr. Katja Markert, Dr. Ines Rehbein

Sommersemester 2019

09.07.2019

#### Overview

Introduction

Global Context Model

Multi-Prototype Model

Experiments

Evaluation (Li & Jurafsky 2015)

Discussion

References

#### Motivation - Homonyms

- S: (n) bank (sloping land (especially the slope beside a body of water)) "they pulled the canoe up on the bank"; "he sat on the bank of the river and watched the currents"
- S: (n) depository financial institution, bank, banking concern, banking company (a financial institution that accepts deposits and channels the money into lending activities) "he cashed a check at the bank"; "that bank holds the mortgage on my home"
- S: (n) bank (a long ridge or pile) "a huge bank of earth"

excerpt of WordNet search for 'bank'

#### Motivation - Homonyms

- S: (n) bank (sloping land (especially the slope beside a body of water)) "they pulled the canoe up on the bank"; "he sat on the bank of the river and watched the currents"
- S: (n) depository financial institution, bank, banking concern, banking company (a financial institution that accepts deposits and channels the money into lending activities) "he cashed a check at the bank"; "that bank holds the mortgage on my home"
- S: (n) bank (a long ridge or pile) "a huge bank of earth"

excerpt of WordNet search for 'bank'

- S: (n) vector (a variable quantity that can be resolved into components)
- <u>S:</u> (n) vector (a straight line segment whose length is magnitude and whose orientation in space is direction)
- S: (n) vector, <u>iransmitter</u> (any agent (person or animal or microorganism) that carries and transmits a disease) "mosquitos are vectors of malaria and yellow fever"; "fleas are vectors of the plague"; "aphids are transmitters of plant diseases"; "when medical scientists talk about vectors they are usually talking about insects"
- S: (n) vector ((genetics) a virus or other agent that is used to deliver DNA to a cell)

WordNet search for 'vector'

### Recap: homographs, homonyms

#### Homographs

Two words that have the same spelling but different meanings ex.: bass, close, minute,  $\dots$ 

#### Homonyms

Two words that have the same spelling and pronunciation but different meanings

ex.: bat, just, patient, ...

# POS tags

Same spelling but different POS tag and meaning:

- beat (n.) to beat so. (v.)
- bear (n.) to bear sth. (v.)
- light (n.) light (adj.)
- bark (n.) to bark (v.)

More on that later!

- Apple is a kind of fruit.
- Apple releases its new ipads.
- Basalt is the commonest volcanic **rock**.
- Rock is the music of teenage rebellion.

from: Li & Jurafsky, 2015

How similar are ...

How similar are ...

1. mouse - cat

How similar are ...

- 1. mouse cat
- 2. mouse keyboard

How similar are ...

- 1. mouse cat
- 2. mouse keyboard
- 3. cat keyboard

How similar are ...

- 1. mouse cat
- 2. mouse keyboard
- 3. cat keyboard

#### Context

- ... changes meaning of a word
- ... changes which meaning of a word comes to mind
- ... provides topical information
- ... should be taken into account when creating embeddings!

- different word senses so far not represented in vector space
- worst case: embedding doesn't capture any sense well
- homonomy and context dependency: wide-spread
- word senses in datasets?

### Training Objective

#### Given

**Input**: A word sequence *s*, document *d* **Output**: correct last word in *s* 

Ranking Cost (Collobert & Weston, 2008)

$$C_{s,d} = \sum_{w \in V} \max(0, 1 - g(s, d) + g(s^w, d))$$
(1)

 $g(\cdot, \cdot)$ : scoring function  $s^{w}$ : s with last word replaced by word wg(s, d) should be larger than  $g(s^{w}, d)$  by a margin of 1  $\Rightarrow$  minimize ranking loss for each (s, d) found in corpus

#### Neural Network Architecture



Figure 1: An overview of our neural language model. The model makes use of both local and global context to compute a score that should be large for the actual next word (*bank* in the example), compared to the score for other words. When word meaning is still ambiguous given local context, information in global context can help disambiguation.

### Local Context

Local score preserves word order and syntactic information.

Input: ordered list of vectors  $x = (x_1, x_2, ..., x_m)$ Output:

$$a_1 = f(W_1[x_1; x_2; \dots; x_m] + b_1)$$
(2)  
score<sub>1</sub> = W<sub>2</sub>a<sub>1</sub> + b<sub>2</sub> (3)

- \* a neural network with one hidden layer
- ▶ [x<sub>1</sub>; x<sub>2</sub>; ...; x<sub>m</sub>]: Concatenation of *m* word embeddings representing *s*
- ▶  $x_i$ : a column in embedding matrix  $L \in \mathbb{R}^{n \times |V|}$ , |V|: size of the vocabulary
- f: element-wise activation function
- ▶  $a_1 \in \mathbb{R}^{h \times 1}$ : activation of hidden layer with *h* hidden nodes
- ▶  $W_1 \in \mathbb{R}^{h \times (mn)}$ ,  $W_2 \in \mathbb{R}^{1 \times h}$ : first, second layer weights
- b1, b2: biases of each layer

### Global Context

**Global score** captures more of the semantics and topics of the document (similar to bag-of-words features).

Input: document as an ordered list of word embeddings

$$d = (d_1, d_2, \ldots, d_k)$$

Output:

$$a_1^{(g)} = f(W_1^{(g)}[c; x_m] + b_1^{(g)})$$
(4)

$$score_g = W_2^{(g)} a_1^{(g)} + b_2^{(g)}$$
 (5)

- \* a two-layer neural network
- [c; x<sub>m</sub>]: Concatenation of weighted average document vector and vector of last word in s

▶  $a_1^{(g)} \in \mathbb{R}^{h^{(g)} \times 1}$ : activation of hidden layer with  $h^{(g)}$  hidden nodes

► 
$$W_1^{(g)} \in \mathbb{R}^{h^{(g)} \times (2n)}, W_2^{(g)} \in \mathbb{R}^{1 \times h^{(g)}}$$
: first, second layer weights

### **Global Context**

#### Weighted average of all word vectors in document

$$c = \frac{\sum_{i=1}^{k} w(t_i) d_i}{\sum_{i=1}^{k} w(t_i)}$$
(6)

 $w(\cdot)$ : weighting function that captures importance of word  $t_i$  in document

here: idf-weighting

#### **Final Score**

#### $score = score_l + score_g$

(7)

### Learning

- Randomly choose a word from dictionary as *corrupt* example for each sequence-document pair (s, d) to sample gradient of the objective
- ► Take derivative of ranking loss with respect to parameters:
  - weights of the neural network: updated via backpropagation
  - embedding matrix L: word representations

- Words have multiple meanings
- Single-prototype models represent only one representation for each word
  - $\Rightarrow$  can not capture different meanings

- Words have multiple meanings
- Single-prototype models represent only one representation for each word
  - $\Rightarrow$  can not capture different meanings
- Representation of one of the meanings is influenced by all meanings of the word
- Using all contexts of a homonymous or polysemous word to build a single prototype

 $\Rightarrow$  none of the meanings is well represented

- Words have multiple meanings
- Single-prototype models represent only one representation for each word
  - $\Rightarrow$  can not capture different meanings
- Representation of one of the meanings is influenced by all meanings of the word
- Using all contexts of a homonymous or polysemous word to build a single prototype

 $\Rightarrow$  none of the meanings is well represented

 $\longrightarrow$  Multi-prototype model uses multiple representations to capture different senses and usages of a word. (*Reisinger and Mooney*, 2010b)

- Words have multiple meanings
- Single-prototype models represent only one representation for each word
  - $\Rightarrow$  can not capture different meanings
- Representation of one of the meanings is influenced by all meanings of the word
- Using all contexts of a homonymous or polysemous word to build a single prototype

 $\Rightarrow$  none of the meanings is well represented

 $\rightarrow$  Multi-prototype model uses multiple representations to capture different senses and usages of a word. *(Reisinger and Mooney, 2010b)* 

 $\rightarrow$  Idea: Learned single-prototype embeddings to represent each context window, then clustered to perform word sense discrimination (*Schütze*, 1998)

#### Learning multiple prototypes



# Words similarity in multi-prototype model (*Reisinger and Mooney, 2010b*)

 $\ll$  AvgSimC corresponds to *soft cluster assignment*, weighting each similarity term in AvgSim by the likelihood of the word contexts appearing in their respective clusters»

$$AvgSimC(w, w') = \frac{1}{K^2} \sum_{i=1}^{K} \sum_{j=1}^{K} p(c, w, i) p(c', w', j) d(\mu_i(w), \mu_j(w'))$$
(8)

- K: number of clusters
- p(c, w, i): likelihood that word w is in its cluster i given context c
- $\mu_i(w)$ : vector representing *i*-th cluster centroid of *w*
- ► d(v, v'): similarity between two vectors, any of the distance functions (Curran 2004)

 $\Rightarrow$  Can be computed with or without context (assuming uniform p(c, w, i) over  $i \longrightarrow AvgSim$ )

# Setup

- Corpus: April 2010 snapshot of Wikipedia corpus (Shaoul and Westbury, 2010), total 2 million articles and 990 million tokens
- Dictionary of 30,000 most frequent words in Wikipedia in lower case
- Preprocessing:
  - Map rare words not found in dictionary to an UNKNOWN token
- Hyperparameters:
  - 10-words window size of local context
  - 10 prototypes (for multi-prototype variants, K = 10)

#### Qualitative Evaluations

| Center   | C&W                | Our Model        |
|----------|--------------------|------------------|
| Word     |                    |                  |
| markets  | firms, industries, | market, firms,   |
|          | stores             | businesses       |
| American | Australian,        | U.S., Canadian,  |
|          | Indian, Italian    | African          |
| illegal  | alleged, overseas, | harmful, prohib- |
|          | banned             | ited, convicted  |

Table 1: Nearest neighbors of words based on cosine similarity (C&W model - Model using single prototype approach) Compared with results of C&W model (Collobert and Weston, 2008)

- Less constrained by syntax, singular and plural forms of a word are similar in meaning
- More semantic

#### Qualitative Evaluations

| Center Word | Nearest Neighbors                |
|-------------|----------------------------------|
| bank_1      | corporation, insurance, company  |
| bank_2      | shore, coast, direction          |
| star_1      | movie, film, radio               |
| star_2      | galaxy, planet, moon             |
| cell_1      | telephone, smart, phone          |
| cell_2      | pathology, molecular, physiology |
| left_1      | close, leave, live               |
| left_2      | top, round, right                |

Table 2: Nearest neighbors of words based learned by the model using the multi-prototype approach based on cosine similarity

The clustering can find different *meanings*, *usages* and *parts of speech* of the words

 $\Rightarrow$  can group different contexts of a word in different groups

| Model                | Corpus | $\rho \times 100$ |
|----------------------|--------|-------------------|
| Our Model-g          | Wiki.  | 22.8              |
| C&W                  | RCV1   | 29.5              |
| HLBL                 | RCV1   | 33.2              |
| C&W*                 | Wiki.  | 49.8              |
| C&W                  | Wiki.  | 55.3              |
| Our Model            | Wiki.  | 64.2              |
| Our Model*           | Wiki.  | 71.3              |
| Pruned tf-idf        | Wiki.  | 73.4              |
| ESA                  | Wiki.  | 75                |
| Tiered Pruned tf-idf | Wiki.  | 76.9              |

| Model                | Corpus | $\rho \times 100$ |
|----------------------|--------|-------------------|
| Our Model-g          | Wiki.  | 22.8              |
| C&W                  | RCV1   | 29.5              |
| HLBL                 | RCV1   | 33.2              |
| C&W*                 | Wiki.  | 49.8              |
| C&W                  | Wiki.  | 55.3              |
| Our Model            | Wiki.  | 64.2              |
| Our Model*           | Wiki.  | 71.3              |
| Pruned tf-idf        | Wiki.  | 73.4              |
| ESA                  | Wiki.  | 75                |
| Tiered Pruned tf-idf | Wiki.  | 76.9              |

| Model                | Corpus | $\rho \times 100$ |
|----------------------|--------|-------------------|
| Our Model-g          | Wiki.  | 22.8              |
| C&W                  | RCV1   | 29.5              |
| HLBL                 | RCV1   | 33.2              |
| C&W*                 | Wiki.  | 49.8              |
| C&W                  | Wiki.  | 55.3              |
| Our Model            | Wiki.  | 64.2              |
| Our Model*           | Wiki.  | 71.3              |
| Pruned tf-idf        | Wiki.  | 73.4              |
| ESA                  | Wiki.  | 75                |
| Tiered Pruned tf-idf | Wiki.  | 76.9              |

| Model                | Corpus | $\rho \times 100$ |
|----------------------|--------|-------------------|
| Our Model-g          | Wiki.  | 22.8              |
| C&W                  | RCV1   | 29.5              |
| HLBL                 | RCV1   | 33.2              |
| C&W*                 | Wiki.  | 49.8              |
| C&W                  | Wiki.  | 55.3              |
| Our Model            | Wiki.  | 64.2              |
| Our Model*           | Wiki.  | 71.3              |
| Pruned tf-idf        | Wiki.  | 73.4              |
| ESA                  | Wiki.  | 75                |
| Tiered Pruned tf-idf | Wiki.  | 76.9              |

- Higher correlation (64.2) than using either local (C&W: 55.3) or global context (Our Model-g: 22.8) alone
- Removing stop words improved correlation (*Our Model\**: 71.3 > 64.2 )
- Still lower than state-of-the-art-results (71.3 < 73.4 < 75 < 76.9)</p>

### Stanford Contextual Word Similarity (SCWS)

Problems with WordSim-353?

### Stanford Contextual Word Similarity (SCWS)

Problems with WordSim-353?

- tiger tiger has a similarity of 10
- similarity has been assigned in isolation
- small dataset, only nouns, ...

### Stanford Contextual Word Similarity (SCWS)

Problems with WordSim-353?

- tiger tiger has a similarity of 10
- similarity has been assigned in isolation
- small dataset, only nouns, ...

| Word 1                                                                       | Word 2                                                   |
|------------------------------------------------------------------------------|----------------------------------------------------------|
| Located downtown along the east <b>bank</b> of the Des Moines River          | This is the basis of all <b>money</b> laundering         |
| and Andy 's getting ready to <b>pack</b> his bags and head up to Los Angeles | defends the house against another <b>pack</b> of zombies |

#### Dataset Construction



#### Evaluation on SCWS

| Model                   | $\rho \times 100$ |
|-------------------------|-------------------|
| C&W-S                   | 57.0              |
| Our Model-S             | 58.6              |
| Our Model-M AvgSim      | 62.8              |
| Our Model-M AvgSimC     | 65.7              |
| tf-idf-S                | 26.3              |
| Pruned <i>tf-idf</i> -S | 62.5              |
| Pruned tf-idf-M AvgSim  | 60.4              |
| Pruned tf-idf-M AvgSimC | 60.5              |

Table 4: Spearman's  $\rho$  correlation on new dataset.

AvgSim: similarity from each prototype equally considered AvgSimC: weighted similarity based on context

### Evaluation of model

- Outperformed C&W's model and state-of-the-art-results
- Multi-prototype model improved performance without using context
- context improves performance even further
- Iower scores overall (task is harder)

#### Evaluation on real-world NLU tasks

- 'Do Multi-Sense Embeddings Improve Natural Language Understanding?' (2015)
- Li & Jurafsky compare performance of multi-sense vectors on different tasks
- use their own model + SkipGram vectors as baseline
- we take a look at general trends and findings

|                                                               | SkipGram 50d | L&J 50d | SG 100d | L&J +<br>global context 100d | SG 300d |
|---------------------------------------------------------------|--------------|---------|---------|------------------------------|---------|
| Named Entity<br>Recognition (CoNLL-2003)                      | 0.852        | 0.854   | 0.867   | 0.871                        | 0.882   |
| POS-Tagging<br>(WSJ)                                          | 0.925        | 0.938   | 0.940   | 0.952                        | 0.954   |
| Sentence-level Sentiment<br>Classification(IMDb, Pang et. al) | 0.750        | 0.750   | 0.768   | 0.763                        | 0.774   |
| Semantic Relationship<br>Classification (SemEval-2010)        | 0.748        | 0.762   | 0.770   | 0.778                        | 0.798   |
| Sentence Semantic<br>Relatedness (SICK, LSTM Model)           | 0.843        | 0.846   | 0.850   | 0.854                        | 0.850   |

|                                                               | SkipGram 50d | L&J 50d | SG 100d | L&J +<br>global context 100d | SG 300d |
|---------------------------------------------------------------|--------------|---------|---------|------------------------------|---------|
| Named Entity<br>Recognition (CoNLL-2003)                      | 0.852        | 0.854   | 0.867   | 0.871                        | 0.882   |
| POS-Tagging<br>(WSJ)                                          | 0.925        | 0.938   | 0.940   | 0.952                        | 0.954   |
| Sentence-level Sentiment<br>Classification(IMDb, Pang et. al) | 0.750        | 0.750   | 0.768   | 0.763                        | 0.774   |
| Semantic Relationship<br>Classification (SemEval-2010)        | 0.748        | 0.762   | 0.770   | 0.778                        | 0.798   |
| Sentence Semantic<br>Relatedness (SICK, LSTM Model)           | 0.843        | 0.846   | 0.850   | 0.854                        | 0.850   |

|                                                               | SkipGram 50d | L&J 50d | SG 100d | L&J +<br>global context 100d | SG 300d |
|---------------------------------------------------------------|--------------|---------|---------|------------------------------|---------|
| Named Entity<br>Recognition (CoNLL-2003)                      | 0.852        | 0.854   | 0.867   | 0.871                        | 0.882   |
| POS-Tagging<br>(WSJ)                                          | 0.925        | 0.938   | 0.940   | 0.952                        | 0.954   |
| Sentence-level Sentiment<br>Classification(IMDb, Pang et. al) | 0.750        | 0.750   | 0.768   | 0.763                        | 0.774   |
| Semantic Relationship<br>Classification (SemEval-2010)        | 0.748        | 0.762   | 0.770   | 0.778                        | 0.798   |
| Sentence Semantic<br>Relatedness (SICK, LSTM Model)           | 0.843        | 0.846   | 0.850   | 0.854                        | 0.850   |

|                                                               | SkipGram 50d | L&J 50d | SG 100d | L&J +<br>global context 100d | SG 300d |
|---------------------------------------------------------------|--------------|---------|---------|------------------------------|---------|
| Named Entity<br>Recognition (CoNLL-2003)                      | 0.852        | 0.854   | 0.867   | 0.871                        | 0.882   |
| POS-Tagging<br>(WSJ)                                          | 0.925        | 0.938   | 0.940   | 0.952                        | 0.954   |
| Sentence-level Sentiment<br>Classification(IMDb, Pang et. al) | 0.750        | 0.750   | 0.768   | 0.763                        | 0.774   |
| Semantic Relationship<br>Classification (SemEval-2010)        | 0.748        | 0.762   | 0.770   | 0.778                        | 0.798   |
| Sentence Semantic<br>Relatedness (SICK, LSTM Model)           | 0.843        | 0.846   | 0.850   | 0.854                        | 0.850   |

|                                                               | SkipGram 50d | L&J 50d | SG 100d | L&J +<br>global context 100d | SG 300d |
|---------------------------------------------------------------|--------------|---------|---------|------------------------------|---------|
| Named Entity<br>Recognition (CoNLL-2003)                      | 0.852        | 0.854   | 0.867   | 0.871                        | 0.882   |
| POS-Tagging<br>(WSJ)                                          | 0.925        | 0.938   | 0.940   | 0.952                        | 0.954   |
| Sentence-level Sentiment<br>Classification(IMDb, Pang et. al) | 0.750        | 0.750   | 0.768   | 0.763                        | 0.774   |
| Semantic Relationship<br>Classification (SemEval-2010)        | 0.748        | 0.762   | 0.770   | 0.778                        | 0.798   |
| Sentence Semantic<br>Relatedness (SICK, LSTM Model)           | 0.843        | 0.846   | 0.850   | 0.854                        | 0.850   |

|                                                               | SkipGram 50d | L&J 50d | SG 100d | L&J +<br>global context 100d | SG 300d |
|---------------------------------------------------------------|--------------|---------|---------|------------------------------|---------|
| Named Entity<br>Recognition (CoNLL-2003)                      | 0.852        | 0.854   | 0.867   | 0.871                        | 0.882   |
| POS-Tagging<br>(WSJ)                                          | 0.925        | 0.938   | 0.940   | 0.952                        | 0.954   |
| Sentence-level Sentiment<br>Classification(IMDb, Pang et. al) | 0.750        | 0.750   | 0.768   | 0.763                        | 0.774   |
| Semantic Relationship<br>Classification (SemEval-2010)        | 0.748        | 0.762   | 0.770   | 0.778                        | 0.798   |
| Sentence Semantic<br>Relatedness (SICK, LSTM Model)           | 0.843        | 0.846   | 0.850   | 0.854                        | 0.850   |

### Trends

- global context always outperforms 50d SkipGram vectors
- ... however 100d vectors always outperform 50d vectors
- increasing dimensionality often equivalent to training with complex model
- many tasks do not profit from word sense disambiguation
  - Named Entity Recognition
  - Sentiment Analysis
- POS-Tagging and Semantic Relationship Classification improved (kind of)
- when using state-of-the-art models: no impact

### Conclusion

- sense disambiguation only helpful in very specific tasks
- similar or better results are often achieved with better models and/or higher dimensionality
- more sophisticated models have knowledge about multiple word senses (cf. lecture 'Uncovering information')

### Discussion

- questions?
- expectation vs reality?

### References I

#### Collobert et. al (2011)

Natural Language Processing (Almost) from Scratch

#### Collobert & Weston (2008)

A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning



#### Curran (2004)

From Distributional to Semantic Similarity. Technical Report

#### 📄 Dhillon & Modha (2001)

Concept Decompositions for Large Sparse Text Data using Clustering

#### Finkelstein et al. (2001)

Placing Search in Context: The Concept Revisited

### References II

#### 📕 Hendrickx et. al (2010)

SemEval-2010 Task 8: Multi-Way Classification of Semantic Relations Between Pairs of Nominals

#### Huang et. al (2012)

Improving Word Representations via Global Context and Multiple Word Prototypes

#### Li & Jurafsky (2015)

Do Multi-Sense Embeddings Improve Natural Language Understanding?



#### Pang et. al (2002)

Thumbs up? Sentiment Classification using Machine Learning Techniques



#### Reisinger & Mooney (2010b)

Multi-Prototype Vector-Space Models of Word Meaning

### References III



#### Shaoul and Westbury (2010)

The Wesbury Lab Wikipedia corpus



#### Schütze (1998)

Automatic Word Sense Discrimination