Evaluating word vectors

VL Embeddings

Uni Heidelberg

SS 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

How to evaluate word vectors?

• Intrinsic vs. extrinsic evaluation

• Intrinsic

evaluation on a dataset created for a specific task
 e.g.: word similarity (semantic, syntactic), word analogy, ...

- easy to compare your model to other models
- fast to compute
- useful for understanding which parameters matter

How to evaluate word vectors?

• Intrinsic vs. extrinsic evaluation

• Intrinsic

evaluation on a dataset created for a specific task
 e.g.: word similarity (semantic, syntactic), word analogy, ...

- easy to compare your model to other models
- fast to compute
- useful for understanding which parameters matter
- not clear how meaningful for real-world tasks

How to evaluate word vectors?

• Intrinsic vs. extrinsic evaluation

Intrinsic

- evaluation on a dataset created for a specific task
 e.g.: word similarity (semantic, syntactic), word analogy, ...
- easy to compare your model to other models
- fast to compute
- · useful for understanding which parameters matter
- not clear how meaningful for real-world tasks

Extrinsic

- evalation on real-world task \rightarrow more meaningful
- might take a long time
- harder to compare to other models/systems (harder to isolate the effect of the embeddings)
- $\rightarrow\,$ keep system fixed, plug in different embedding types

Intrinsic word vector evaluation

Word vector analogies

```
A is to B what C is to ?
e.g. man is to women what king is to ?
```

$$d = \operatorname{argmax}_{i} \frac{(x_b - x_a + x_c)^T x_i}{||x_b - x_a + x_c||}$$

Evaluate word vectors by how well they capture intuitive semantic and syntactic analogies:

- substract man from woman and add king
- find vector with highest cosine similarity to A B + C

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

From R. Socher's slides for CS224d (2016) https://cs224d.stanford.edu/lectures/CS224d-Lecture3.pdf

Intrinsic word vector evaluation Word analogies (GloVe) – Examples

From R. Socher's slides for CS224d (2016) https://cs224d.stanford.edu/lectures/GS224d-Lecture3.pdf 😑 🖉 🖉 🧟

Intrinsic word vector evaluation Word analogies (GloVe) – Examples

From R. Socher's slides for CS224d (2016) https://cs224d.stanford.edu/lectures/@S224d-lecture3.pdf 🚊 🛛 🖓 🖓

Intrinsic word vector evaluation Word analogies (GloVe) – Examples

From R. Socher's slides for CS224d (2016) https://cs224d.stanford.edu/lectures/@S224d=lecture3.pdf 🚊 🛛 🔍 🖓

Datasets for intrinsic word vector evaluation

Word vector analogies: Syntactic and semantic examples from http://download.tensorflow.org/data/questions-words.txt (Mikolov et al. 2013)

city-in-state Chicago Illinois Houston Texas Chicago Illinois Philadelphia Pennsylvania Chicago Illinois Dallas Texas Chicago Illinois Detroit Michigan Chicago Illinois Boston Massachusetts

. . .

From R. Socher's slides for CS224d (2016) https://cs224d.stanford.edu/lectures/CS224d-Lecture3.pdf

Datasets for intrinsic word vector evaluation

Word vector analogies: Syntactic and semantic examples from http://download.tensorflow.org/data/questions-words.txt (Mikolov et al. 2013)

capital-world Abuja Nigeria Accra Ghana Abuja Nigeria Algiers Algeria Abuja Nigeria Ankara Turkey Abuja Nigeria Apia Samoa Abuja Nigeria Asmara Eritrea

. . .

From R. Socher's slides for CS224d (2016) https://cs224d.stanford.edu/lectures/CS224d-Lecture3.pdf

Datasets for intrinsic word vector evaluation

Word vector analogies: Syntactic and semantic examples from http://download.tensorflow.org/data/questions-words.txt (Mikolov et al. 2013)

gram4-superlative

bad worst big biggest bad worst cold coldest bad worst cool coolest bad worst fast fastest bad worst good best

From R. Socher's slides for CS224d (2016) https://cs224d.stanford.edu/lectures/CS224d-Lecture3.pdf

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Impact of dimension size on analogy task

Compare different word embedding models and hyperparameters for analogy task

- Do more dimensions help?
- How important is corpus size?
- How important is the domain/genre of your corpus?
- Which model is better for capturing syntax/semantics?

Impact of dimension size on analogy task

Model	Dim.	Size	Sem.	Syn.	Tot.
ivLBL	100	1.5B	55.9	50.1	53.2
HPCA	100	1.6B	4.2	16.4	10.8
GloVe	100	1.6B	67.5	54.3	<u>60.3</u>
SG	300	1B	61	61	61
CBOW	300	1.6B	16.1	52.6	36.1
vLBL	300	1.5B	54.2	64.8	60.0
ivLBL	300	1.5B	65.2	63.0	64.0
GloVe	300	1.6B	80.8	61.5	<u>70.3</u>
SVD	300	6B	6.3	8.1	7.3
SVD-S	300	6B	36.7	46.6	42.1
SVD-L	300	6B	56.6	63.0	60.1
$CBOW^{\dagger}$	300	6B	63.6	67.4	65.7
SG^{\dagger}	300	6B	73.0	66.0	69.1
GloVe	300	6B	<u>77.4</u>	67.0	<u>71.7</u>
CBOW	1000	6B	57.3	68.9	63.7
SG	1000	6B	66.1	65.1	65.6
SVD-L	300	42B	38.4	58.2	49.2
GloVe	300	42B	81.9	69.3	75.0

Percentage accuracy on analogy dataset.

(i)vLBL: Mnih et al. (2013); SG/CBOW: Mikolov et al. (2013); HPCA: Hellinger PCA (Lebret and Collobert 2014); SVD-S: \sqrt{M} ; SVD-L: log(1 + M))

From R. Socher's slides for CS224d (2016) https://cs224d.stanford.edu/lectures/GS224d-Lecture3.pdf 🚊 🗤 🔍

Impact of context window size on analogy task

· Evaluate window size for symmetric vs. asymmetric contexts

(日) (圖) (E) (E) (E)

Impact of context window size on analogy task

• Evaluate window size for symmetric vs. asymmetric contexts

- Asymmetric contexts: left context only
- Best dimension size: pprox 300
- Best window size: 8
- But results might be different for downstream tasks (and also for other languages)

Impact of context window size on analogy task

• Evaluate window size for symmetric vs. asymmetric contexts

- Asymmetric contexts: left context only
- Best dimension size: pprox 300
- Best window size: 8
- But results might be different for downstream tasks (and also for other languages)

Parameter choice: trade-off between accuracy and efficiency

From R. Socher's slides for CS224d (2016) https://cs224d.stanford.edu/legtures/GS224d-Lecture3.pdf 🛓 🔊

Training time for different embeddings

• Direct comparison: CBOW and GloVe

Training time for different embeddings

• Direct comparison: CBOW and GloVe

• But: CBOW trained for only 1 iteration – fair comparison?

From R. Socher's slides for CS224d (2016) https://cs224d.stanford.edu/lectures/CS224d-Lecture3.pdf 🚊 🕠

Training time for different embeddings

• Direct comparison: Skip-Gram and GloVe

Impact of data size and domain on GloVe

- More data is better
- Wikipedia better than news (for analogy dataset)

Datasets for word similarity evaluation

- Word similarity: Correlation between cosine similarity (or other distance measure) and human judgments
- WordSim353 (word similarity and relatedness)

(http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/)

Word 1	Word 2	Human (mean)
tiger	cat	7.35
tiger	tiger	10.00
book	paper	7.46
computer	internet	7.58
plane	car	5.77
professor	doctor	6.62
stock	phone	1.62
stock	CD	1.31
stock	jaguar	0.92

Intrinsic evaluation based on word similarity History

- Rubenstein and Goodenough (1965):
 - first word similarity task with 65 word pairs and judgments by human raters
- Goal: test distributional hypothesis (Harris, 1954)
 - R&G found positive correlation between contextual similarity and human-annotated similarity of word pairs

Datasets for word similarity evaluation

- WS353 (Mikolov et al. 2013): similar and related words
- RG (Rubenstein and Goodenough, 1965): 65 word pairs assessed by semantic similarity with a scale from 0 to 4
- MC (Miller and Charles, 1991): subset of RG containing 10 pairs with high similarity, 10 with middle similarity and 10 with low similarity
- SCWS (Huang et al., 2012) ⇒ similarity ratings for different word senses
- RW (Luong et al., 2013) ⇒ 2,034 pairs of rare words assessed by semantic similarity with a scale from 0 to 10

More datasets for word similarity evaluation

Name	Description			
SimVerb-3500	3,500 pairs of verbs assessed by semantic similarity (that means that pairs that			
	are related but not similar have a fairly low rating) with a scale from 0 to 4.			
MEN (Marco, Elia and Nam)	3,000 pairs assessed by semantic relatedness with a discrete scale from 0 to 50.			
RW (Rare Word)	2,034 pairs of words with low occurrences (rare words) assessed by			
	semantic similarity with a scale from 0 to 10.			
SimLex-999	999 pairs assessed with a strong respect to semantic similarity with a scale			
	from 0 to 10.			
SemEval-2017	500 pairs assessed by semantic similarity with a scale from 0 to 4 prepared			
	for the SemEval-2017 Task 2. Contains words and collocations (climate change).			
MTurk-771	771 pairs assessed by semantic relatedness with a scale from 0 to 5.			
WordSim-353	353 pairs assessed by semantic similarity with a scale from 0 to 10.			
MTurk-287	287 pairs assessed by semantic relatedness with a scale from 0 to 5.			
WordSim-353-REL	252 pairs, a subset of WordSim-353 containing no pairs of similar concepts.			
WordSim-353-SIM	203 pairs, a subset of WordSim-353 containing similar or unassociated			
	(to mark all pairs that receive a low rating as unassociated) pairs.			
Verb-143	143 pairs of verbs assessed by semantic similarity with a scale from 0 to 4.			
YP-130 (Yang and Powers)	130 pairs of verbs assessed by semantic similarity with a scale from 0 to 4.			
RG-65 (Rubenstein and Goodenough)	65 pairs assessed by semantic similarity with a scale from 0 to 4.			
MC-30 (Miller and Charles)	30 pairs, a subset of RG-65 which contains 10 pairs with high similarity,			
	10 with middle similarity and 10 with low similarity.			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

https://github.com/vecto-ai/word-benchmarks

Evaluation of different embeddings on word similarity task

• Spearman rank correlation with human judgments

Model	Size	WS353	MC	RG	SCWS	RW
SVD	6B	35.3	35.1	42.5	38.3	25.6
SVD-S	6B	56.5	71.5	71.0	53.6	34.7
SVD-L	6B	65.7	72.7	75.1	56.5	37.0
$\operatorname{CBOW}^\dagger$	6B	57.2	65.6	68.2	57.0	32.5
SG^\dagger	6B	62.8	65.2	69.7	<u>58.1</u>	37.2
GloVe	6B	<u>65.8</u>	72.7	77.8	53.9	38.1
SVD-L	42B	74.0	76.4	74.1	58.3	39.9
GloVe	42B	<u>75.9</u>	<u>83.6</u>	<u>82.9</u>	<u>59.6</u>	<u>47.8</u>
CBOW*	100B	68.4	79.6	75.4	59.4	45.5

All vectors with dimension=300, CBOW* contains phrase vectors

From R. Socher's slides for CS224d (2016) https://cs224d.stanford.edu/lectures/CS224d-Lecture3.pdf

Problems for intrinsic evaluation

Faruqui, Tsvetkov, Rastogi and Dyer (2016): Problems with Evaluation of Word Embeddings Using Word Similarity Tasks

• Word similarity as a proxy for word vector evaluation

 \Rightarrow correlate the distance between vectors and human judgments of semantic similarity

Advantages

- fast and computationally efficient
- But: is it reliable?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Notion of *similarity* is subjective

Are the two words similar to each other?

• Notion of *similarity* is subjective

Are the two words similar to each other?

Kaffee – Tee

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Notion of *similarity* is subjective

Are the two words similar to each other?

Auto – Zug

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Notion of *similarity* is subjective

Are the two words similar to each other?

Baum – Blume

• Notion of *similarity* is subjective

Are the two words similar to each other?

Tasse – Kaffee

• Notion of *similarity* is subjective

Are the two words similar to each other?

Tasse – Kaffee

- Similarity often confused with relatedness
 - ⇒ cup and coffee are rated more similar than car and train in WordSim353

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• similar problems with other datasets, e.g. MEN (Bruni et al., 2012)

• Notion of *similarity* is subjective

Are the two words similar to each other?

Tasse – Kaffee

- Similarity often confused with relatedness
 - ⇒ cup and coffee are rated more similar than car and train in WordSim353
 - similar problems with other datasets, e.g. MEN (Bruni et al., 2012)
 - \Rightarrow Word vectors that capture this difference get punished

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Word similarity judgments are context-dependent
- How similar are:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Word similarity judgments are context-dependent
- How similar are:
 - Dackel Fernseher

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Word similarity judgments are context-dependent
- How similar are:
 - Dackel Fernseher Dackel – Karotte

- Word similarity judgments are context-dependent
- How similar are:
 - Dackel Fernseher Dackel – Karotte Dackel – Siamkatze

- Word similarity judgments are context-dependent
- How similar are:
 - Dackel Fernseher Dackel – Karotte Dackel – Siamkatze

Dackel - Pudel

- Word similarity judgments are context-dependent
- How similar are:
 - Dackel Fernseher Dackel – Karotte Dackel – Siamkatze

Dackel – Pudel Dackel – Terrier

- Word similarity judgments are context-dependent
- How similar are:
 - Dackel Fernseher Dackel – Karotte Dackel – Siamkatze

Dackel – Pudel Dackel – Terrier Dackel – Siamkatze

- Word similarity judgments are context-dependent
- How similar are:
 - Dackel Fernseher Dackel – Karotte Dackel – Siamkatze

Dackel – Pudel Dackel – Terrier Dackel – Siamkatze

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Human judgments can vary, depending on context

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Word similarity dependent on word sense
- How similar are:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Word similarity dependent on word sense
- How similar are:

Maus – Katze

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Word similarity dependent on word sense
- How similar are:
 - Maus Katze Maus – Keyboard

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Word similarity dependent on word sense
- How similar are:
 - Maus Katze Maus – Keyboard Katze – Keyboard

- Word similarity dependent on word sense
- How similar are:
 - Maus Katze Maus – Keyboard Katze – Keyboard

Only one vector per word but more than one word sense \Rightarrow Session on Multisense word embeddings (July 9)

Intrinsic evaluation based on word similarity

No standardised splits - overfitting

- Good practice for ML
 - Split data into train, dev, test set
 - Select best model on dev, evaluate on test \rightarrow avoid overfitting!

- For word similarity tasks
 - no standard splits, vectors are optimised on the test sets \rightarrow overfitting
- Datasets are often quite small
 - further splits might make results unreliable

Overfitting

Possible Solutions

- Use **one** dataset for tuning, evaluate on **all other** datasets (Faruqui and Dyer 2014)
- Use **all** available datasets for tuning (Lu et al. 2015)
 - 1. choose hyperparameters with **best average** performance across **all** tasks
 - 2. choose hyperparameters that beat the baseline vectors on **most** tasks
- Makes sure that model generalises well across different tasks

Intrinsic evaluation based on word similarity Statistical significance

- Significance testing important especially for non-convex objectives whith multiple locally optimal solutions
- Rastogi et al. (2015) observed that improvements obtained by models on a small word similarity dataset were insignificant
- Compute statistical significance for word similarity evaluation (see Faruqui et al. 2016)

Intrinsic evaluation based on word similarity

Low correlation with extrinsic tasks

- Chiu, Korhonen & Pyysalo (2016): Intrinsic evaluation of word vectors fails to predict extrinsic performance
 - possible reason: failure to distinguish similarity from relatedness

Intrinsic evaluation based on word similarity

Low correlation with extrinsic tasks

- Chiu, Korhonen & Pyysalo (2016): Intrinsic evaluation of word vectors fails to predict extrinsic performance
 - possible reason: failure to distinguish similarity from relatedness
- Artetxe, Labaka, Lopez-Gazpio and Agirre (2018): Uncovering divergent linguistic information in word embeddings with lessons for intrinsic and extrinsic evaluation
 - intrinsic evaluation not a good predictor for performance in downstream applications

References

- Mikolov, Yih and Zweig: (2013): Linguistic regularities in continuous space word representations. NAACL 2013.
- Faruqui, Tsvetkov, Rastogi and Dyer (2016): Problems With Evaluation of Word Embeddings Using Word Similarity Tasks. The 1st Workshop on Evaluating Vector Space Representations for NLP, Berlin, Germany.
- Artetxe, Labaka, Lopez-Gazpio and Agirre (2018): Uncovering Divergent Linguistic Information in Word Embeddings with Lessons for Intrinsic and Extrinsic Evaluation. CoNLL 2018. Brussels, Belgium.
- Rubenstein and Goodenough (1965): Contextual correlates of synonymy. Communications of the ACM 8(10):627–633.
- Harris, Z. (1954). Distributional structure. Word, 10(23): 146-162.
- Multimodal Distributional Semantics E. Bruni, N. K. Tran and M. Baroni. Journal of Artificial Intelligence Research 49: 1-47.
- Collobert, Weston Bottou, Karlen, Kavukcuoglu and Kuksa (2011): Natural Language Processing (almost) from Scratch. Journal of Machine Learning Research 12 (2011) 2461-2505.
- Lu, Wang, Bansal, Gimpel and Livescu (2015): Deep multilingual correlation for improved word embeddings. NAACL 2015.
- Rastogi, Van Durme and Arora (2015): Multiview LSA: Representation learning via generalized CCA. NAACL 2015.
- Chiu, Korhonen and Pyysalo (2016): Intrinsic Evaluation of Word Vectors Fails to Predict Extrinsic Performance. ACL 2016.

Data and Code

- Code for Artetxe etal. (2018): https://github.com/artetxem/uncovec
- The MEN dataset https://staff.fnwi.uva.nl/e.bruni/MEN
- Datasets for word vector evaluation https://github.com/vecto-ai/word-benchmarks