◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Variations to the SkipGram Model

VL Embeddings

Uni Heidelberg

SS 2019

Generalisation of SkipGram to arbitrary contexts

- Neural embeddings so far:
 - linear bag-of-words context (with window size *n*)
 - Die kleine graue Maus frißt den leckeren Käse
- What about other types of contexts?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Generalisation of SkipGram to arbitrary contexts

- Neural embeddings so far:
 - linear bag-of-words context (with window size *n*)
 - Die kleine graue Maus frißt den leckeren Käse
- What about other types of contexts?

Levy and Goldberg (2014): Dependency-based word embeddings

Starting point: SkipGram

- Recap: Skipgram with negative sampling (SGNS)
 - Each word $w \in W$ is associated with a vector $v_w \in \mathbb{R}^d$
 - Each context $c \in C$ is associated with a vector $v_c \in \mathbb{R}^d$
 - W is the word vocabulary
 - *C* is the context vocabulary
 - *d* is the embedding dimensionality
- Vector entries are the parameters θ that we want to learn
- Given: dataset D of observed (w, c) pairs in the corpus
- Objective: maximise the probability for seen word-context pairs (w, c) in D and minimise the probability for random word-context pairs in D'

Starting point: SkipGram

- **Recap**: Skipgram with negative sampling (SGNS)
 - Each word $w \in W$ is associated with a vector $v_w \in \mathbb{R}^d$
 - Each context $c \in C$ is associated with a vector $v_c \in \mathbb{R}^d$
 - W is the word vocabulary
 - *C* is the context vocabulary
 - *d* is the embedding dimensionality
- Vector entries are the parameters θ that we want to learn
- Given: dataset D of observed (w, c) pairs in the corpus
- SGNS training objective:

$$argmax_{v_w,v_c} \left(\sum_{(w,c)\in D} log\sigma(v_c \cdot v_w) + \sum_{(w,c)\in D'} log\sigma(-v_c \cdot v_w) \right)$$

where $\sigma(x) = 1/(1 + e^x)$ sigmoid function

Starting point: SGNS

SGNS

- Observed word-context pairs will end up with similar embeddings
- Context is defined as a bag-of-words window with size n
- Model is unsensitive to position in context window

Starting point: SGNS

SGNS

- Observed word-context pairs will end up with similar embeddings
- Context is defined as a bag-of-words window with size n
- Model is unsensitive to position in context window

Dependency-based embeddings

Replace bag-of-words context with syntactic context

Dependency-based word embeddings

Australian scientist discovers star with telescope

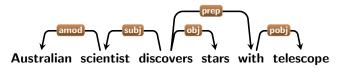
- Which word-context pairs does SGNS extract for discover?
- Which word-context pairs does SGNS extract for star?

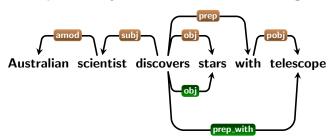
Dependency-based word embeddings

Australian scientist discovers star with telescope

- Which word-context pairs does SGNS extract for discover?
- Which word-context pairs does SGNS extract for star?
- How does the dependency tree for this sentence look like?
- What contexts could a dependency-based model extract?

Dependency-based word embeddings

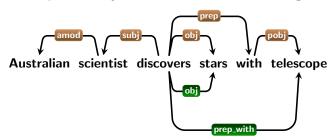




• Collapse preposition relations into single arc (attach PP obj to head of preposition but keep information on prep form).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

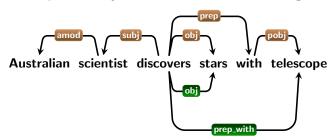
Dependency-based word embeddings



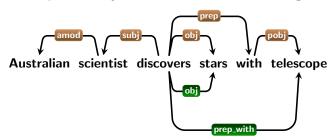
• Collapse preposition relations into single arc (attach PP obj to head of preposition but keep information on prep form).

WORD CONTEXTS

Dependency-based word embeddings



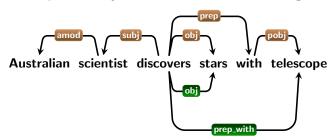
• Collapse preposition relations into single arc (attach PP obj to head of preposition but keep information on prep form).



• Collapse preposition relations into single arc (attach PP obj to head of preposition but keep information on prep form).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

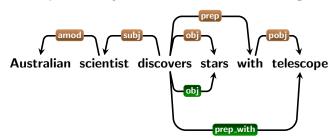
Word	Contexts
Australian	scientist / amod $^{-1}$
scientist	australian / amod, discovers / subj $^{-1}$



• Collapse preposition relations into single arc (attach PP obj to head of preposition but keep information on prep form).

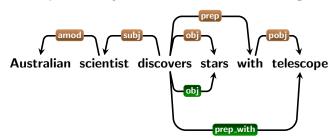
Word	Contexts
Australian	scientist / amod $^{-1}$
scientist	australian / amod, discovers / subj $^{-1}$
discovers	scientist / subj, star / obj, telescope / prep_with

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト



• Collapse preposition relations into single arc (attach PP obj to head of preposition but keep information on prep form).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



• Collapse preposition relations into single arc (attach PP obj to head of preposition but keep information on prep form).

Word	Contexts
Australian	scientist / amod $^{-1}$
scientist	australian / amod, discovers / subj $^{-1}$
discovers	scientist / subj, star / obj, telescope / prep_with
star	discovers / obj ⁻¹
telescope	discovers / prep_with $^{-1}$

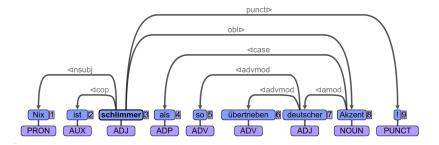
Dependency-based word embeddings

Extract syntactic context

- Parse the corpus
- for a target word w with dependents m_1, \ldots, m_k and a head h
- \Rightarrow extract contexts $(m_1, lbl_1), \ldots, (m_k, lbl_k), (h, lbl_h^{-1})$

Dependency-based word embeddings

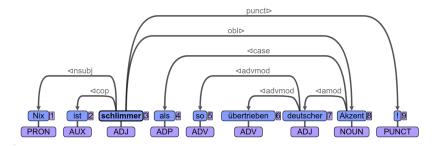
• Given the following tree in Universal Dependencies schema:



- Extract all context words for
 - schlimmer
 - Akzent

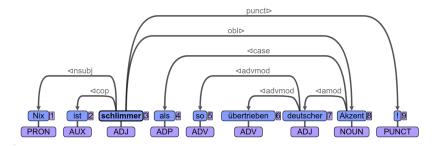
Dependency-based word embeddings

• Given the following tree in Universal Dependencies schema:



- Extract all context words for
 - schlimmer Nix/nsubj, ist/cop, Akzent/obl, !/punct
 - Akzent

• Given the following tree in Universal Dependencies schema:



- Extract all context words for
 - schlimmer
 - Akzent

Nix/nsubj, ist/cop, Akzent/obl, !/punct deutscher/amod, schlimmer/prep_als⁻¹

FastText

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Advantages of dependency-based embeddings

- Captures context that is functionally related but far away
- Ignores words that are close by but not related
- Captures general functional relations (e.g. *stars* are objects of *discovery*, *scientists* are subjects of *discovery*)

Advantages of dependency-based embeddings

- Captures context that is functionally related but far away
- Ignores words that are close by but not related
- Captures general functional relations (e.g. *stars* are objects of *discovery*, *scientists* are subjects of *discovery*)
- Hypothesis: Dependency-based embeddings will capture more functional and less topical similarity.

FastText

Related work

Previous work in distributional semantics

- Lin (1998)
- Padó and Lapata (2007)
- Baroni and Lenci (2010)
- ...

Syntax-based semantic space models

Experiments: Settings & Data

Settings

- 3 Training conditions
 - BoW context with size k = 5
 - BoW context with size k = 2
 - Dependency context
- modified version of SkipGram implementation
- negative samples = 15
- embedding dimensions = 300

Data

- All embeddings trained on English Wikipedia
 - all tokens lower-cased
 - all word-context pairs less frequent than 100 were ignored
- Vocabulary size: 175,000 words
- Over 900,000 distinct syntactic contexts

Qualitative Evaluation

• Manually inspect 5 most similar words (cosine similarity) of a given target word

Findings:

 \Rightarrow BoW finds words that associate with w \Rightarrow DEPS finds words that behave like w

Domain similarity vs. functional similarity

Qualitative Evaluation

Target Word	BoW5	BoW2	DEPS
batman	nightwing	superman	superman
	aquaman	superboy	superboy
	catwoman	aquaman	supergirl
	superman	catwoman	catwoman
	manhunter	batgirl	aquaman
	dumbledore	evernight	sunnydale
	hallows	sunnydale	collinwood
hogwarts	half-blood	garderobe	calarts
	malfoy	blandings	greendale
	snape	collinwood	millfield
	nondeterministic	non-deterministic	pauling
	non-deterministic	finite-state	hotelling
turing	computability	nondeterministic	heting
	deterministic	buchi	lessing
	finite-state	primality	hamming
	gainesville	fla	texas
	fla	alabama	louisiana
florida	jacksonville	gainesville	georgia
	tampa	tallahassee	california
	lauderdale	texas	carolina
	aspect-oriented	aspect-oriented	event-driven
	smalltalk	event-driven	domain-specific
object-oriented	event-driven	objective-c	rule-based
	prolog	dataflow	data-driven
	domain-specific	4gl	human-centered
	singing	singing	singing
	dance	dance	rapping
dancing	dances	dances	breakdancing
	dancers	breakdancing	miming
	tap-dancing	clowning	busking

I → from Levy & Goldberg (2014)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Qualitative Evaluation

• Hogwards: domain vs semantic type (famous schools)

target word	BoW5	BoW2	Deps
hogwarts	dumbledore	evernight	sunnydale
	hallows	sunnydale	collinwood
	half-blood	garderobe	calarts
	malfoy	blandings	greendale
	snape	collinwood	millfield

Qualitative Evaluation

• Florida: bag-of-words contexts generate meronyms (counties or cities within Florida), while dependency-based contexts provide cohyponyms (other US states)

target word	BoW5	BoW2	Deps
florida	gainesville	fla	texas
	fla	alabama	louisiana
	jacksonville	gainesville	georgia
	tampa	tallahassee	california
	lauderdale	texas	carolina

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Qualitative Evaluation

• object-oriented, dancing: dep-based embeddings share a syntactic function (adjectives, gerunds)

target word	BoW5	BoW2	Deps
object-oriented	aspect-oriented	aspect-oriented	event-driven
	smalltalk	event-driven	domain-specific
	event-driven	objective-c	rule-based
	prolog	dataflow	data-driven
	domain-specific	4gl	human-centered

FastText

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Qualitative Evaluation

• object-oriented, dancing: dep-based embeddings share a syntactic function (adjectives, gerunds)

target word	BoW5	BoW2	Deps
dancing	singing	singing	singing
	dance	dance	rapping
	dances	dances	breakdancing
	dancers	breakdancing	miming
	tap-dancing	clowning	busking

FastText

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Qualitative Evaluation

• object-oriented, dancing: dep-based embeddings share a syntactic function (adjectives, gerunds)

target word	BoW5	BoW2	Deps
dancing	singing	singing	singing
	dance	dance	rapping
	dances	dances	breakdancing
	dancers	breakdancing	miming
	tap-dancing	clowning	busking

Larger window size \rightarrow more topicality

Quantitative Evaluation: WordSim353

- Word pairs that show
 - relatedness (topical similarity)
 - similarity (functional similarity)
- Task setup
 - rank the *similar* pairs above the *related* ones
 - ranking according to cosine similarity between embeddings
 - draw recall-precision curve that describes the embedding's affinity towards one subset over another

Quantitative Evaluation: WordSim353

- Word pairs that show
 - relatedness (topical similarity)
 - similarity (functional similarity)
- Task setup
 - rank the *similar* pairs above the *related* ones
 - ranking according to cosine similarity between embeddings
 - draw recall-precision curve that describes the embedding's affinity towards one subset over another

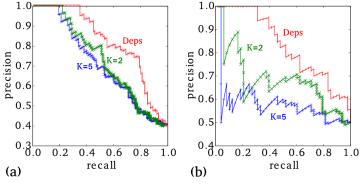
What behaviour would you expect?

Quantitative Evaluation: WordSim353

- Word pairs that show
 - relatedness (topical similarity)
 - similarity (functional similarity)
- Task setup
 - rank the *similar* pairs above the *related* ones
 - ranking according to cosine similarity between embeddings
 - draw recall-precision curve that describes the embedding's affinity towards one subset over another

Expectation: Curve for DEPS > BOW2 > BOW5

Quantitative Evaluation: WordSim353

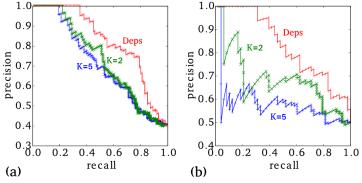


from Levy & Goldberg (2014)

• Recall-precision curve when ranking similar words above related words

- (a) based on WordSim353 dataset
- (b) based on Chiarello et al. (1990) dataset (domain vs. function)

Quantitative Evaluation: WordSim353

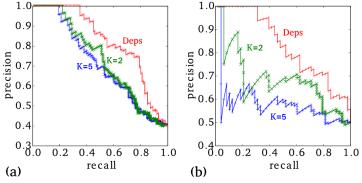


from Levy & Goldberg (2014)

• Recall-precision curve when ranking similar words above related words

- (a) based on WordSim353 dataset
- (b) based on Chiarello et al. (1990) dataset (domain vs. function)

Quantitative Evaluation: WordSim353



from Levy & Goldberg (2014)

• Recall-precision curve when ranking similar words above related words

- (a) based on WordSim353 dataset
- (b) based on Chiarello et al. (1990) dataset (domain vs. function)

What results would you expect when using dependency-based embeddings for the analogy task? Dependencies worse than BoW for analogies = -2

Insights into the model

• Neural word embeddings are often considered uninterpretable, unlike sparse, count-based distributional representations where each dimension corresponds to a particular known context

 \Rightarrow not possible to assign a meaning to each dimension

How can we get insights into neural word embeddings?

Insights into the model

• Neural word embeddings are often considered uninterpretable, unlike sparse, count-based distributional representations where each dimension corresponds to a particular known context

 \Rightarrow not possible to assign a meaning to each dimension

How can we get insights into neural word embeddings?

- Examine which contexts are *activated* by a target word
- Model learns to maximise the dot product v_c · v_w for observed word pairs (w, c)
 - Keep context embeddings
 - Which contexts are most activated by a given target word (i.e.: have the highest dot product)

Insights into the model

- List 5 most activated contexts for example words
- Most discriminative syntactic contexts

batman	hogwarts	turing
superman/conj ⁻¹	students/prep_at ⁻¹	machine/nn ^{-1}
spider-man/conj ⁻¹	educated/prep_at ⁻¹	test/nn ⁻¹
superman/conj	student/prep_at ⁻¹	theorem/poss ⁻¹
spider-man/conj	stay/prep_at ⁻¹	machines/nn $^{-1}$
robin/conj	learned/prep_at ^{-1}	tests/nn ⁻¹
florida	object-oriented	dancing
$marlins/nn^{-1}$	programming/amod $^{-1}$	dancing/conj
beach/appos ⁻¹	language/amod $^{-1}$	dancing/conj $^{-1}$
jacksonville/appos ⁻¹	framework/amod ⁻¹	singing/conj ⁻¹
tampa/appos $^{-1}$	interface/amod ⁻¹	singing/conj
florida/conj $^{-1}$	software/amod $^{-1}$	ballroom/nn

Generalisation of SGNS

Sum-up

- Generalisation of linear bag-of-words context to arbitrary contexts
 - here: dependency-based contexts
- Depending on the context, the model learns different properties from the same data

Generalisation of SGNS

Sum-up

- Generalisation of linear bag-of-words context to arbitrary contexts
 - here: dependency-based contexts
- Depending on the context, the model learns different properties from the same data

Dependency-based embeddings

 are less topical and exhibit more functional similarity than the original skipgram embeddings

Generalisation of SGNS

Sum-up

- Generalisation of linear bag-of-words context to arbitrary contexts
 - here: dependency-based contexts
- Depending on the context, the model learns different properties from the same data

Dependency-based embeddings

 are less topical and exhibit more functional similarity than the original skipgram embeddings

What other contexts are possible?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

FastText – Background

- Mikolov et al. 2013: Distributed Representations of words and phrases and their compositionality
 - Representation of words in vector space
 - Drawbacks:
 - no sentence representations
 - does not exploit morphology (different representations for disaster / disastrous)

FastText – Motivation

- Better representations for morphological variants of same word
- Better representations for rare/unseen words
- $\Rightarrow\,$ Train word representations with character-level features

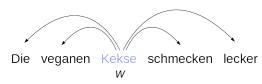
・ロット (日) (日) (日) (日) (日)

FastText – Motivation

- · Better representations for morphological variants of same word
- Better representations for rare/unseen words
- \Rightarrow Train word representations with character-level features

Use character ngrams to predict surrounding context

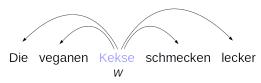
Recap: SkipGram



 $\begin{array}{l} {\sf Kekse} \to {\sf Die} \\ {\sf Kekse} \to {\sf veganen} \\ {\sf Kekse} \to {\sf schmecken} \\ {\sf Kekse} \to {\sf lecker} \end{array}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Recap: SkipGram



 $\begin{array}{l} {\sf Kekse} \to {\sf Die} \\ {\sf Kekse} \to {\sf veganen} \\ {\sf Kekse} \to {\sf schmecken} \\ {\sf Kekse} \to {\sf lecker} \end{array}$

Model probability of a context word given a word

representation for word w: v_w representation for context word c: v_c

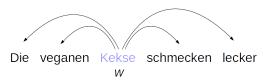
$$p(c|w) = \frac{e^{v_w^\top v_c}}{\sum_{k=1}^{K} e^{v_w^\top v_k}}$$

• Word vectors $v_w \in \mathbb{R}^d$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Softmax

Recap: SkipGram



 $\begin{array}{l} {\sf Kekse} \to {\sf Die} \\ {\sf Kekse} \to {\sf veganen} \\ {\sf Kekse} \to {\sf schmecken} \\ {\sf Kekse} \to {\sf lecker} \end{array}$

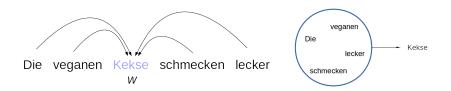
• Model probability of a context word given a word

representation for word w: v_w representation for context word c: v_c

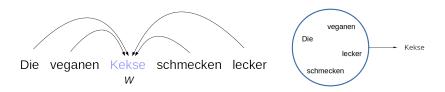
- Word vectors $v_w \in \mathbb{R}^d$
- Softmax computationally expensive
- \Rightarrow use approximations:
 - Hierarachical softmax
 - Negative sampling $log(1 + e^{-v_{w_t}^\top v_c}) + \sum_{n \in N_c} log(1 + e^{v_{w_t}^\top v_n})$

$$p(c|w) = \frac{e^{v_w^\top v_c}}{\sum_{k=1}^{K} e^{v_w^\top v_k}}$$

Recap: CBOW



Recap: CBOW



Model probability of a word given the context

representation for context C: h_c representation for word w: v_w

$$p(w|C) = \frac{e^{h_c^\top v_w}}{\sum_{k=1}^K e^{h_c^\top v_k}}$$

• Continuous bag of words $h_c = \sum_{c \in C} v_c$ (sum of the words in the context)

• As in SkipGram: model probability of a context word *c* given a word *w*

representation for word w: h_w representation for word c: v_c

$$p(c|w) = \frac{e^{h_w^\top v_c}}{\sum_{k=1}^K e^{h_w^\top v_k}}$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

• As in SkipGram: model probability of a context word *c* given a word *w*

representation for word w: h_w representation for word c: v_c

$$p(c|w) = \frac{e^{h_w^\top v_c}}{\sum_{k=1}^K e^{h_w^\top v_k}}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Representation of a word w computed based on ngrams: all ngrams with length *I* where $3 \le I \le 6$ and word form

 As in SkipGram: model probability of a context word c given a word w

representation for word w: h_w representation for word c: v_c

$$p(c|w) = \frac{e^{h_w^\top v_c}}{\sum_{k=1}^K e^{h_w^\top v_k}}$$

 Representation of a word w computed based on ngrams: all ngrams with length *l* where 3 ≤ *l* ≤ 6 and word form

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Advantages of FastText

Out-of-Vocabulary (OOV) words

- Ngram representations are shared across words
 ⇒ more reliable representations for rare words
- We now can build vectors for unseen words:

Advantages of FastText

Out-of-Vocabulary (OOV) words

- Ngram representations are shared across words
 ⇒ more reliable representations for rare words
- We now can build vectors for unseen words:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Training with Stochastic Gradient Descent
- Minimise negative log-likelihood
- Set ngram length = 0 \Rightarrow

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Training with Stochastic Gradient Descent
- Minimise negative log-likelihood
- Set ngram length = 0 \Rightarrow SkipGram with negative sampling

- Training with Stochastic Gradient Descent
- Minimise negative log-likelihood
- Set ngram length = $0 \Rightarrow$ SkipGram with negative sampling
- Evaluation model parameters:
 - 300 dimensions
 - sample 5 negative examples per word
 - context window size c, uniformly sample c between 1 and 5
 - subsample frequent words with threshold 10^{-4}
 - discard all words that occur < 5 times in the corpus
 - learning rate 0.05

- Training with Stochastic Gradient Descent
- Minimise negative log-likelihood
- Set ngram length = 0 \Rightarrow SkipGram with negative sampling
- Evaluation model parameters:
 - 300 dimensions
 - sample 5 negative examples per word
 - context window size c, uniformly sample c between 1 and 5
 - subsample frequent words with threshold 10^{-4}
 - discard all words that occur < 5 times in the corpus
 - learning rate 0.05
- Training speed:
 - Model is around $1.5 \times$ slower than SkipGram

Word Similarity Evaluation

- Given: pair of words w_1, w_2
- Compare cosine similarity for w₁, w₂ against human judgements

$$s(w_1, w_2) = \frac{x_{w_1}^{\top} x_{w_q}}{||x_{w_1}|| \ ||x_{w_2}||}$$

• Spearman's rank correlation

		SG	CBOW	FT*	FT
AR	WS353	51	52	54	55
	GUR350	61	62	64	70
DE	GUR65	78	78	81	81
DE	ZG222	35	38	41	44
EN	RW	43	43	46	47
EIN	WS353	72	73	71	71
ES	WS353	57	58	58	59
FR	RG65	70	69	75	75
RO	WS353	48	52	51	54
RU	HJ	59	60	60	66

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

FT* uses null vector for unknowns

Word Similarity Evaluation

- Given: pair of words w_1, w_2
- Compare cosine similarity for w₁, w₂ against human judgements

$$s(w_1, w_2) = \frac{x_{w_1}^{'} x_{w_q}}{||x_{w_1}|| \ ||x_{w_2}||}$$

• Spearman's rank correlation

		SG	CBOW	FT*	FT
AR	WS353	51	52	54	55
	GUR350	61	62	64	70
DE	GUR65	78	78	81	81
DL	ZG222	35	38	41	44
EN	RW	43	43	46	47
LIN	WS353	72	73	71	71
ES	WS353	57	58	58	59
FR	RG65	70	69	75	75
RO	WS353	48	52	51	54
RU	HJ	59	60	60	66

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FT* uses null vector for unknowns

Works particularly well for datasets with rare words and for morphologically rich languages

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Word Analogy Evaluation

- Paris \rightarrow France; Rom \rightarrow ?
 - Predict the analogy
 - Evaluate using accuracy

What results would you expect?

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Word Analogy Evaluation

- Paris \rightarrow France; Rom \rightarrow ?
 - Predict the analogy
 - Evaluate using accuracy

		SG	CBOW	FT
CS	Semantic	25.7	27.6	27.5
	Syntactic	52.8	55.0	77.8
DE	Semantic	66.5	66.8	62.3
	Syntactic	44.5	45.0	56.4
EN	Semantic	78.5	78.2	77.8
	Syntactic	70.1	69.9	74.9
IT	Semantic	52.3	54.7	52.3
	Syntactic	51.5	51.8	62.7

Word Analogy Evaluation

- Paris \rightarrow France; Rom \rightarrow ?
 - Predict the analogy
 - Evaluate using accuracy

		SG	CBOW	FT
CS	Semantic	25.7	27.6	27.5
	Syntactic	52.8	55.0	77.8
DE	Semantic	66.5	66.8	62.3
	Syntactic	44.5	45.0	56.4
EN	Semantic	78.5	78.2	77.8
	Syntactic	70.1	69.9	74.9
IT	Semantic	52.3	54.7	52.3
	Syntactic	51.5	51.8	62.7

 Works well for syntactic analogies, especially for morphologically rich languages (CS, DE)

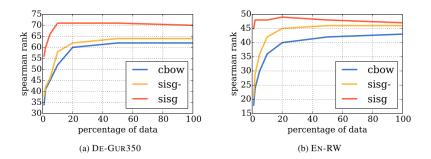
groß \rightarrow größer; hoch \rightarrow ?

Effect of training data size

- FastText works well for rare and unknown words
- Hypothesis: FastText is also better in settings where we do not have a lot of training data.
- Test: train CBOW and FastText on subsets of Wikipedia (1, 2, 5, 10, 20, 50%)

Effect of training data size

- FastText works well for rare and unknown words
- Hypothesis: FastText is also better in settings where we do not have a lot of training data.
- Test: train CBOW and FastText on subsets of Wikipedia (1, 2, 5, 10, 20, 50%)



(日)、

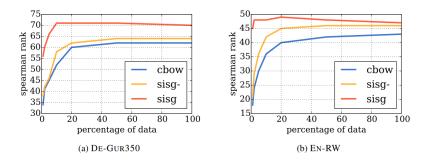
э

< ∃⇒

э

Effect of training data size

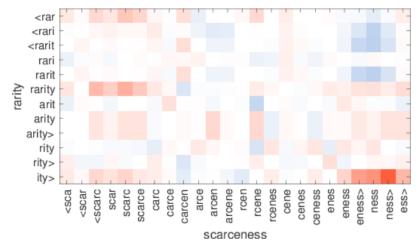
- FastText works well for rare and unknown words
- Hypothesis: FastText is also better in settings where we do not have a lot of training data.
- Test: train CBOW and FastText on subsets of Wikipedia (1, 2, 5, 10, 20, 50%)



Adding more data does not always improve results

Word similarity evaluation for unknown words

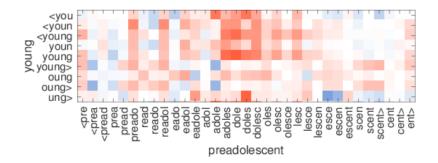
- Train on 1% of EN Wikipedia
- Report cosine similarity for ngrams of word pairs where one word is unknown



▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

Word similarity evaluation for unknown words

- Train on 1% of EN Wikipedia
- Report cosine similarity for ngrams of word pairs where one word is unknown



イロト 不得 トイヨト イヨト

э

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

FastText – Sum-up

- Extension of the SGNS model that represents each word by the sum of its subword representations
- For ngram length=0 \Rightarrow same as SGNS
- Fast to train, good results for smaller training data sizes
- Superior performance especially for rare and unknown words and for syntactic analogies

References

- Marco Baroni and Alessandro Lenci (2010): Distributional memory: A general framework for corpus-based semantics. Computational Linguistics, 36(4):673–721.
- Yoav Goldberg and Omer Levy (2014): word2vec explained: deriving mikolov et al.'s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722.
- Dekang Lin. 1998. Automatic retrieval and clustering of similar words. In Proceedings of the 36th Annual Meeting of the Association for Computational Lin- guistics and 17th International Conference on Computational Linguistics - Volume 2, ACL '98, pages 768–774, Stroudsburg, PA, USA. Association for Computational Linguistics.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean (2013): Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013.
 Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages 3111–3119.
- Sebastian Padó and Mirella Lapata (2007): Dependency-based construction of semantic space models. Computational Linguistics, 33(2):161–199.
- Omer Levy and Yoav Goldberg (2014): Dependency-based word embeddings. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 302–308, Baltimore, Maryland, USA