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Below and beyond words

• We can learn semantic representations for words

• But what about other linguistic units?

• characters
• morphemes
• phrases
• sentences
• paragraphs
• documents
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Subword embeddings

• Motivation:
High-quality representations for rare or unknown words for

• morphologically rich languages
• low-resourced languages
• languages with no clear word boundaries
• noisy text (learner language, user-generated content)
• text from new domains (with many unknown words)

• FastText:
• word embeddings enriched with subword information

Why not training representations for subword units directly?
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Subword embedding types

• Character-based embeddings (characters or char-ngrams)

• Ling et al. 2015; Luong and Manning 2016; Chiu and Nichols
2016

• Phonemes and Graphemes
• Chaudhary et al. 2018

• Morphemes
• Luong et al., 2013; Botha and Blunsom, 2014; Cotterell and

Schütze, 2015; Chaudhary et al. 2018

• Byte-pair encoding
• Sennrich et al. 2016; Heinzerling and Strube 2018

• Compound embeddings
• Do et al. 2017
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Character-based embeddings

• Based on
• recurrent neural networks (RNN) (Ling et al. 2015)
• convolutional neural networks (CNN) (Chiu and Nichols, 2016)

from Ling et al. (2015)
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Character-based embeddings

• Often used in combination with word embeddings, e.g. for
• POS/NER tagging (e.g. dos Santos and Zadrozny 2014; dos

Santos et al. 2015; Ma and Hovy 2016; Lample et al. 2016)
• dependency parsing (e.g. Ma et al. 2018)
• text normalisation (Watson et al. 2018)
• ...
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Byte-pair encoding (BPE)

• Variable-length encoding: text as a sequence of symbols
• iteratively merge most frequent symbol pair into a new symbol

e.g.: 1. iteration: t h → th

e.g.: 2. iteration: th e → the

aaabdaaabac Z=aa
ZabdZabac Y=ab
ZYdZYac X=ZY
XdXac Example from:

https://howlingpixel.com/i-en/Byte_pair_encoding

• Parameter o: number of merge operations
• o determines if resulting encoding mostly creates short

character sequences (e.g. o = 1000) or if it includes symbols
for many frequently occurring words, e.g. o = 30, 000

https://howlingpixel.com/i-en/Byte_pair_encoding
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Byte-pair encoding (BPE)

Heinzerling and Strube (2018): Collection of pre-trained subword
embeddings in 275 languages

• https://github.com/bheinzerling/bpemb

• Based on Byte-Pair Encoding (BPE)
• Trained on Wikipedia:

1. iterate over Wikipedia to create byte-pairs
2. pretrain embeddings for resulting BPE symbol using GloVe

• Advantages of BPE:
• competetive performance to other types of embeddings for

entity typing
• more compact representations
• no tokenisation required

https://github.com/bheinzerling/bpemb
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Beyond word embeddings: phrase vectors

Mikolov et al. (2013c): Distributed representations of words and
phrases and their compositionality

New York Times ⇒ newspaper
(not combination of new and york and times)

• Goal: Learn vectors that represent phrases instead of words

• Approach:

1. find words that occur frequently together, and infrequently in
other context

2. merge those into an atomic representation, e.g.:

New York Times ⇒ New York Times

3. train word vectors on the modified corpus
where phrases are now new atomic words
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Phrase Vectors

Evaluation

• Analogical reasoning task:
https://code.google.com/archive/p/word2vec/source/default/

source/source-archive.zip (file: questions-phrases.txt)

• Test set with both words and phrases
Steve Jobs : Apple :: Bill Gates : ?

• correct if nearest representation to

vec(”Apple”) - vec(”Steve Jobs”) + vec(”Bill Gates”)

is vec(”?”)

• 5 different categories of analogies

 https://code.google.com/archive/p/word2vec/source/default/source/source-archive.zip
 https://code.google.com/archive/p/word2vec/source/default/source/source-archive.zip
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Phrase Vectors
Evaluation

• Train different SkipGram models with dimensions = 300
and context size=5 on news data

• Hierarchical Softmax versus Negative Sampling
• with/without subsampling of frequent tokens

Method Dimensionality no subsampling [%] 10−5 subsampling [%]
NEG-5 300 24 27
NEG-15 300 27 42
HS-Huffman 300 19 47

Table : Accuracies of SkipGram models on phrase analogy dataset.

Best model for analogy task: hierarchical softmax and subsampling
of frequent words
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• Maximise accuracy by increasing amount of training data

⇒ dataset with about 33 billion words
• Hierarchical Softmax, dimension = 1000, context size = entire

sentence

• increased accuracy of 72%
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Additive compositionality

• Word and phrase representations exhibit a linear structure
that makes it possible to perform analogical reasoning using
simple vector arithmetics

vec(Berlin) - vec(Germany) + vec(France) = Paris

• Word vectors also show additive compositionality:
• combine words by an element-wise addition of their vector

representations, e.g.:
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Additive compositionality

• Word and phrase representations exhibit a linear structure
that makes it possible to perform analogical reasoning using
simple vector arithmetics

vec(Berlin) - vec(Germany) + vec(France) = Paris

• Word vectors also show additive compositionality:
• combine words by an element-wise addition of their vector

representations, e.g.:

vec(French) + vec(actress) = Juliette Binoche
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Beyond Words: Sentence and Document Representations

Le and Mikolov (2014): Distributed Representations of Sentences
and Documents

• Paragraph Vector
• learns fixed-length feature representations from variable-length

pieces of texts (sentences, paragraphs, documents)
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Beyond Words: Sentence and Document Representations
Motivation

• Standard features for many text classification tasks: BoW
• text is represented by fixed-length vectors of bag-of-words

or bag-of-ngrams
• simple, efficient, hard-to-beat baseline

• Disadvantages
• word order is lost (or only preserved for short contexts)
→ semantically different sentences can have the same
(or very similar) representations:

When Mary started singing, everybody went home.

When everybody went home, Mary started singing.
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Beyond Words: Sentence and Document Representations
Motivation

• How can we get meaningful representations for sequences of
words?

• Two very simple approaches:

1. Phrase vectors (Mikolov et al. 2013c)
⇒ merge word collocations into a new, atomic string and train
embeddings for that new “word”

2. Combine word vectors by concatenating them or by taking
the average of two vectors, then use resulting vector to
predict other words in the context
(Bengio et al., 2006; Collobert & Weston, 2008; Mnih &
Hinton, 2008; Turian et al., 2010; Mikolov et al., 2013a,b)
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Beyond Words

Le and Mikolov (2014): Distributed Representations of Sentences
and Documents

• Learn representations for whole sentences, paragraphs,
documents... ⇒ vector representation is trained to predict
words in a paragraph

1. concatenate paragraph vector with several word vectors from
the paragraph

2. predict the following word in the given context
3. train both, word and paragraph vectors, using stochastic

gradient descent and backpropagation (Rumelhart et al., 1986)

• Paragraph vectors are unique among paragraphs

• Word vectors are shared across all paragraphs



Subword embeddings Phrase Vectors Paragraph Vectors

Beyond Words
Le and Mikolov (2014)

Intuition

• Word vectors:
• contribute to predicting words in sentence context

• Paragraph vectors:
• contribute to predicting words sampled from whole paragraph
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Beyond Words
Le and Mikolov (2014)

Word vector model
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Beyond Words
Le and Mikolov (2014)

Paragraph vector model
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Beyond Words
Le and Mikolov (2014)

• Technical details:
• Sample fixed-lenght contexts from a sliding window over the

paragraph
• Paragraph vector is shared across all contexts generated from

the same paragraph
• Word vector matrix is shared across paragraphs
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Beyond Words
Le and Mikolov (2014)

• Technical details:
• Sample fixed-lenght contexts from a sliding window over the

paragraph
• Paragraph vector is shared across all contexts generated from

the same paragraph
• Word vector matrix is shared across paragraphs

• Training with SGD and backpropagation

• In every iteration

1. sample a fixed-length context from a random paragraph,
2. compute the error gradient from the network
3. use gradient to update parameters of the model
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Beyond Words
Le and Mikolov (2014)

• Advantages of the paragraph vectors
• inherit properties of word vectors
• sensitive to word order (at least in a small context)
• less sparse than bag-of-ngram models

• Extension of the model: Distributed bag of words version of
Paragraph Vector (PV-DBOW)

• similar to SkipGram (not shown here, see paper)
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