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Contributions

• Discriminate whether a syntactic construction is 
meant literally or metaphorically

• Identify metaphoric expressions in other languages without
language specific training data

→ Metaphors are conceptual, rather than lexical, in nature
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How To Define A Metaphor ?

• Metaphor is a type of "conceptual mapping" 
(Lakoff and Johnson, 1980)

• The proportion of words used metaphorically ranges 
from 5% to 20% (Steen et al.)

• A choice of metaphors affects decision making 
(Thibodeau and Boroditsky, 2013)
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Problems With Finding Metaphors

1. Subjective component

2. Domain- and context-dependent
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Methodology

Task: Define features that distinguish between metaphoric and 
literal uses for the constructs:

AN (adjective-noun): SVO (subject-verb-object):

broken promise (metaphor) my car drinks gasoline

broken car (literal) i drink water
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Conceptual Features

The vector will consist of the concatenation of the conceptual 
features:

1. Abstractness and imageability

2. Supersenses

3. Vector space word representations
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coarse-grained conceptual features

fine-grained lexical features



1. Abstractness And Imageability

Abstractness and imageability are not a redundant, Examples:
Vengeance (Vergeltung) -> calls up an emotional image,    Img. - ,Con.  -
Torture (Folter) -> calls up emotions and even visual images, Img.533,Con.437

Acrobat ---Score:--Imageability:583--Concreteness:566
Alacrity (Bereitwilligkeit) ---Score:--Imageability:189--Concreteness:269
Coif (Haube) ---Score:--Imageability:202--Concreteness:421

→ train two separate classifiers for abstractness and imageability on a seed set 
of words from the MRC database
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2. Supersenses

Example:

“drinks gasoline”  <verb.consumption, noun.substance>

“drinks juice” <verb.consumption, noun.food>

the word head participates in 33 synsets, three of which are related to 
the supersense noun.body

→ supersense is 3/33 ≈ 0,09
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3. Vector Space Word Representations

• designed to capture lexical semantic properties

• there is a strong similarity between the vector spaces across 
languages

→ vector space models can also be seen as vectors of (latent) semantic 
concepts, that preserve their “meaning” across languages
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Cross Lingual
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WordNet supersenses example:

The Russian word голова(golova) is translated 
as head and brain 

→ We select all the synsets of the nouns head
and brain

→ There are 38 such synsets (33 for head and 
5 for brain)

→ Four of these synsets are associated with 
the supersense noun.body

→ Therefore, the value of the feature 
noun.body is 4/38 ≈ 0,11



Training:

For SVO → TroFi (Trope Finder) dataset

For AN   → Created their own training set

Testing:

We compile eight test datasets in four 
languages, four for SVO relations, and four for
AN relations



Experiments
10-Fold Cross Validation In English
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Experiments
On Out-Of-Domain Data In English
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Experiments
Comparing To Tsvetkov et al. / Turney et al.
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Tsvetkov et al.l Turney et al.l



Experiments – Cross Lingual
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Other Metaphor Examples
• “Travel is no more than a sorcerer's cauldron

full of emeralds“

• Implied Metaphors: “Hanging out with her was 
worse than my date with Frankie”

• In Georgian: “bedniereba agaprens” which 
means in English --- happy is up and 
“ubedureba dzirs daganarcxebs” which means -
-- sad is down 
In English: “I'm feeling up/down“

• “Vep'his tqaosani“ → “The one with the 
Wepchi(tiger or panther) fur”, a metaphor for a 
man wrapped in passions
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Conclusion

→ Experiments support their hypothesis

→ Using all Feature Classes leads to best results

→ VSM has the biggest impact

→ they put a lot of effort into the experiments
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Pros and Cons

Pros:

▪ Detection of metaphors in different languages with a training set in only
one language (less annotation work) !

▪ Experiments showed good performance

→ Could confirm their hypothesis that metaphors are conceptual

Cons:

▪ Cultural metaphors can not (are less likely to) be detected

▪Only AN and SVO constructs

▪ Average when having multiple translations could be improved
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Thank you for your attention
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Discussion
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