VUA shared task	Introduction	LSTM	Embeddings	Model	Datasets	Experiments	References

Neural Metaphor Detection in Context By Ge Gao, Yejin Choi and Luke Zettlemoyer (2018)

Stephan Detert

Ruprecht-Karls-Universität Heidelberg

19.06.2019

VUA shared task	Introduction	LSTM	Embeddings	Model	Datasets	Experiments	References

VUA shared task

2 Introduction

3 LSTM

4 Embeddings

VUA shared task ●0000000	Introduction	LSTM 000000	Embeddings	Model 0000	Datasets 000	Experiments 0000000000000000	References
Backgrou	nd						

Idea of Gao et al. (2018)

- Use standard Bi-LSTM model Bi-LSTM is already proven to perform well in VUA shared task 2018
- Idea: Combine LSTM approach with neural contextualized word representation

Leong et al.: Report on 2018 VUA Metpahor Detection Shared Task

Model

Datasets

Experiments

References

Embeddings

VUA shared task

Introduction

ISTM

Idea: Share knowledge about best architectures among growing Metaphor Detection researcher community.

- Task: Metaphor recognition on all POS or verbs
- Training phase: Training dataset is published participants decide how to train on this dataset (cross validation, generating sub-set as development set)
 Result: N = 12 trained systems are ready for testing
- Evaluation with easy accessible framework on common dataset
- Teams get test dataset and perform predictions on it **Result:** Predictions are submitted and automatically compared against true test labels

Experiments 0000000 Approaches - Overview

References

VUA shared task

Team	Word Embeddings	Dictionary-based	Linguistic	CRF	RNN	CNN	LSTM	Bi-LSTM	Di-LSTM	Context
THU NGN	Х					Х		Х		
ΟϹΟΤΑ	X		Х				Х	Х		
bot.zen	X				Х					
ZIL IPIPAN		Х					Х			
DeepReader	X		Х						Х	
Samsung_ RD_ PL	X			Х						Х
MAP	X			Х				Х		
nsu ai			Х	Х						

Features for metaphor detection tasks

- Concreteness/abstractness (Turney et al., 2011)
- Imaginability (Boradwell et al., 2013, Strzalkowski et al., 2013)
- Feature norms (Bulat et al., 2017)
- Sensory features (Tekiroglu et al, 2015; Shutova et al., 2016)
- Bag-of-words features (Köper and im Walde, 2016)
- Semantic class (Hovy et al., 2013; Tsvetkov et al., 2014)
- Embedding-based approaches (Köper and im Walde, 2017; Rei et al., 2017)

Trends in system design

- All submitted systems but one are based on NN architecture
- Use of explicit linguistic features
- Broad variety of corpora used to generate embeddings

VUA shared task	Introduction	LSTM	Embeddings	Model	Datasets	Experiments	References
00000000							

Comparison of approaches

Rank	Team	Р	R	F1	Approach
			All	POS (O	verall)
1	THU NGN	0.608	0.700	0.651	word embeddings + CNN + Bi-LSTM
2	OCOTA	0.595	0.680	0.635	word embeddings + Bi-LSTM + linguistic
3	bot.zen	0.553	0.698	0.617	word embeddings + LSTM RNN
4	Baseline 2	0.510	0.696	0.589	UL + WordNet + CCDB + Logistic Regression
5	ZIL IPIPAN	0.555	0.615	0.583	dictionary-based vectors + LSTM
6	Baseline 1	0.521	0.657	0.581	UL + Logistic Regression
7	DeepReader	0.511	0.644	0.570	word embeddings + Di-LSTM + linguistic
8	Samsung_RD_PL	0.547	0.575	0.561	word embeddings + CRF + context
9	MAP	0.645	0.459	0.536	word embeddings + Bi-LSTM + CRF
10	nsu_ai	0.183	0.111	0.138	linguistic + CRF

Figure: Team scores ranked by F1

Source: [5]

 VUA shared task 00000000
 Introduction
 LSTM
 Embeddings
 Model
 Datasets
 Experiments
 References

Comparison of approaches THU NGN vs. MAP

	Р	R	F1
THU NGN	0.608	0.700	0.651
MAP	0.645	0.459	0.536

Both approaches use word embessings, Bi-LSTM Further comparison:

- Both use word2vec
- Both use additional features like POS tags
- THU NGN uses CNN
- THU NGN uses ensemble method
- MAP uses CRF

Authors of the VUA evaluation paper conclude, that using Softmax instead of CRF improves recall rate R.

VUA shared task 0000000●	Introduction	LSTM 000000	Embeddings	Model 0000	Datasets 000	Experiments 000000000000000	References
Conclusio	n						

- Metaphor detection for **verbs** is easier for current approaches. Performance on all parts of speech is worse.
- There are severe **genre-based gaps** in performance accrosss different genres.
- Traditional baseline classifiers relying on **feature engineering** are **not far behind** deep learning approaches. Combining NNs with explicit linguistic features may be promising approach for the future.

VUA shared task	Introduction ●○	LSTM 000000	Embeddings 00000000000	Model 0000	Datasets 000	Experiments 000000000000000	References
What is c	ontext?						

- Verb, target word (Turney et al.)
- SVO triples (Shutova et al.)
- Full sentence (Köper and im Walde, 2017; Turney et al., 2011; Jang et al., 2016)

Two task formulations

Sequence labeling task: Every word in a sentence is target word.

Makethepeople'sheartglow
$$\uparrow$$
 \uparrow \uparrow \uparrow \uparrow

Classification model: Only a single target **verb** per sentence is labeled.

The sequence labeling generalizes the classification task, classifications can be derived from sequence labeling. **BUT:** We will observe differences in performance.

RNNs handle tokens from input sequence by keeping information in memory

Sub-class of Recurrent Neural Networks (RNNs): LSTMs

VUA shared taskIntroductionLSTMEmbeddingsModelDatasetsExperimentsReferences00

LSTM: Layer Architecture [4]

LSTMs process token sequences. Multi-layer architectures are possible.

t

VUA shared task Introduction OO Broken Strategy Strategy

Long-Short-Term-Memory Architecture [4]

C: **Cell state**, memory, running through all blocks Writing to memory through gatings

Long-Short-Term-Memory Architecture [4]

Forgetting function: weight matrix W_f , bias b_f $f_t = \sigma (W_f \cdot [h_{t-1}, x_t] + b_f)$

Add new values to memory: $i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$ $\tilde{C}_t = \tanh (W_C \cdot [h_{t-1}, x_t] + b_C)$ VUA shared task Introduction OCON OCON DESTM CONCORD NO. 1000 Datasets Concord Detailed Datasets Concord Detailed Detail

Long-Short-Term-Memory Architecture [4]

Input - output gate: $o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$

Process output components: $h_t = o_t * \tanh(C_t)$

VUA shared task Introduction LSTM Embeddings Model Datasets Experiments References

Bidirectional LSTM

Source: [7]

VUA shared task	Introduction 00	LSTM 000000	Embeddings ●00000000000	Model 0000	Datasets 000	Experiments 000000000000000	References
Pre-Proce	ssing						

Open-source NLP library spaCy

- Lemmatization
- Tokenization
- Part-of-speech tagging

VUA shared task Introduction OSCONDO

Sentences are encoded by two concatenated vectors

For the task of word sense disambiguation, the combination of two embedding variations has been proven. (Birke and Sakar)

- Pre-trained word embeddings (GloVe) w_i
- Embeddings from language Models (ELMo) e_i

Global Vectors for Word Embeddings (GloVe) [8]

Embeddings

00000000000

Model

Datasets

Experiments

References

Word-based representation algorithm

LSTM

VUA shared task

Introduction

- Representation vectors based on co-occurence of words in training corpus
- Learning objective: Dot product of two vectors = log probability of two words' co-occurence
- GloVe performs well on word analogy tasks

VUA shared task Introduction LSTM Embeddings 00000000 Nodel Datasets Experiments References

Embeddings from language Models (ELMo) [1]

New about ELMo: Derived from whole context sentence! ELMo vector covers...

• Complex characteristics of word usage (syntax and semantics)

Example

- 1 withdraw money in the bank.
- 2 She had a nice walk along the river **bank**.

Bank has different word embeddings in ELMo

Using ELMo, textual entailment, question answering and sentiment analysis improve (up to 20 %).

VUA shared task Introduction LSTM Embeddings Model Datasets Experiments References

Language Models (LM) [1]

• Predict token based on left context and right context My dog barks at the mailman left context target right context

• Predict token tk

$$p(t_1, t_2, \ldots, t_N) = \prod_{k=1}^N p(t_k | t_1, t_2, \ldots, t_{k-1})$$

Architecture of recent state-of-the-art language models

- Get context-independent word representation $\overrightarrow{\mathbf{h}}_{k,L}^{LM}$ of t_k given $(t_{k+1}, ..., t_N)$
- Pass representation through *L* Layers
- At each position k each layer outputs context-dependent vector $\overrightarrow{\mathbf{h}}_{k,i}^{LM}$
- The top Layer outputs $\overrightarrow{\mathbf{h}}_{k,L}^{LM}$
- Output of top Layer applied to Softmax function to predict next token

- Feed context independent embeddings $t_0...t_{k-1}$ and $t_k + 1...t_N$ into RNN
- 2 Capture layer representations for each t_k
- **③** Supervised RNN forms context-sensitive representation h_k
- The layer representations h_k are weighted, normalized, summed up and scaled to one ELMo vector:

$$\text{ELMo}_{k}^{\textit{task}} = \gamma^{\text{task}} \sum_{j=0}^{L} s_{j}^{\textit{task}} h_{k,j}^{LM}$$

VUA shared task Introduction LSTM Embeddings 0000000000 Datasets Experiments References

ELMo-improved architectures

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06/21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Source: [1]

Figure: Models enhanced by use of ELMo representation

VUA shared task Introduction OCONOCOO IN CONCEPTION INCORPORATI INCORPORATI IN CONCEPTION INCORPORATI INCORPORATI INCORPORATI IN

Visual interpretation of ELMo vectors [2]

Recall: There are 3 layers in ELMo

- 0 Character-based embedding
- 1 biLSTM capturing syntax (mainly)
- 2 biLSTM capturing semantics (mainly)

We will visualize vectors as outputs of layers 1, 2

Visualization of ELMo vectors

Source: [2]

Figure: PCA of layer 1

VUA shared task Introduction OS INT Constraints Noted Datasets Constraints References

Visualization of ELMo vectors

Figure: PCA of layer 2

VUA shared task	Introduction	LSTM 000000	Embeddings 00000000000	Model ●000	Datasets 000	Experiments 000000000000000	References
Model ove	arviaw						

- Raw word encoding
- 2 Deep word embedding with ELMo vector e_i
- **③** Pre-trained word embedding w_i
- Input word representation to bidirectional LSTM
- Feedforward neural network (otpimized for log-likelihood of gold labels)

Sequence Labeling Model

Source: [3]

Input to model: token representation $[w_i; e_i]$

Classification Model

Source: [3]

Input to model: token representation $[w_i; e_i; n_i]$

Input to model: token representation $[w_i; e_i; n_i]$ n_i indicates, whether token is classification target

- LSTM gives contextualized representation h_i
- **2** Tokens in context sentence are weighted by attention a_i $a_i = SoftMax_i (W_a h_i + b_a)$ Weights W_a and bias b_a are learnt parameters
- 3 Introduce weighted sum c: $c = \sum_{i=1}^{n} a_i h_i$
- Feed c to feedforward network to compute the label scores for target verb.

VUA shared task	Introduction	LSTM 000000	Embeddings 00000000000	Model 0000	Datasets ●00	Experiments 000000000000000	References
Datasets							

- MOH
 - Extract example sentences for WordNet instances
 - Label them manually (CrowdFlower)
 - $\bullet\,$ Higher metaphor density than natural likelihood in running text

communicate, The rooms communicated, 1

MOH-X

• Subset of MOH: argument of verb is extraceted

workers, abuse, This boss abuses his workers

- TroFi
 - 50 verb clusters with literal/non-literal usage
 - Higher metaphor density (see MOH-X)

CLUSTER: absorb, IDX: 12, LABEL: 0, 'Vitamins cold be passed right out of the body without being absorbed'

VUA shared task	Introduction	LSTM 000000	Embeddings 00000000000	Model 0000	Datasets 0●0	Experiments 000000000000000	References
Datasets							

VUA

- 117 fragments sampled accross genres in British National Corpus: Academic, News, Conversation, Fiction
- Same number of tokens for each genre
- Over 2K unique verbs
- All words in sentence are labled

('PRON', 'VERB', 'PART', 'PRON', 'ADP', 'DET', 'NOUN', 'PUNCT'), He M-turned M-on me like a M-snake

VUA shared task 00000000	Introduction	LSTM 000000	Embeddings 00000000000	Model 0000	Datasets 00●	Experiments 000000000000000	References

Dataset statistics

	# Expl.	% Metaphor	# Uniq. Verb	Avg # Sent. Len
MOH-X	647	49%	214	8.0
MOH	1,639	25%	440	7.4
TroFi	3,737	43%	50	28.3
VUA	23,113	28%	2047	24.5

Source: [3]

Implementation Details

Pre-trained part

- ELMo embeddings:
 2 layers bidirectional LSTM
 Hidden state: 512 dimensions, each layer
- GloVe embeddings: 300 dimensional vectors derived from pre-trained matrix

Trainable part

- LSTM sequence labeling/classification 300 dimensional hidden state
- Dropout applied on input to LSTM and feedforward layer to prevent over-fitting
- Optimizer: SGD, ADAM

Classification Experiment Setup

- MOH-X and TroFi: 10-fold cross validation
- VUA: original training/test/development split

Sequence Labeling Experiment Setup

- Use VUA as it contains labels for all POS
- Manually create training/test/development split

Comparison to other models

- Lexical baseline: Logistic regression Weights inversely proportional to class frequencies, see naive Bayes
- Klebanov (2016): Logistic regression classifier Features: Verb lemmas, verb's semantic class from WordNet
- Rei (2017): Neural similarity network Features: skip-gram, word embeddings
- Köper (2017): Balanced logistic regression classifier Features: target verb lemma rated for abstractness
- Wu (2018): CNN-LSTM model with weighted-softmax classifier

Features: pre-trained word2vec, POS tags, word cluster features

VUA shared task	Introduction	LSTM 000000	Embeddings 00000000000	Model 0000	Datasets 000	Experiments 000000000000000000000000000000000000	References
	N.4						

Evaluation Metric

- Precision P
- F1 score
- Overall accuracy
- For VUA: F1 scores averaged per genre:
 - conversation
 - academic writing
 - fiction
 - news

VUA shared task	Introduction	LSTM	Embeddings	Model	Datasets	Experiments	References
						000000000000000000000000000000000000000	

Evaluation Results

Model	P N	AOH-X R	(10 fold F1	1) Acc.	Р	TroFi (R	10 fold) F1	Acc.	Р	VUA R	- Test F1	Acc.	MaF1
Lexical Baseline	39.1	26.7	31.3	43.6	72.4	55.7	62.9	71.4	67.9	40.7	50.9	76.4	48.9
Klebanov (2016)	-	-	-	-	-	-	-	-	-	-	-	-	60.0
Rei (2017)	73.6	76.1	74.2	74.8	-	-	-	-	-	-	-	-	-
Köper (2017)	-	-	-	-	-		75.0	-	-	-	62.0	-	-
Wu (2018) ensemble	-	-	-	-	-	-	-	-	60.0	76.3	67.2	-	-
CLS SEO	75.3 79.1	84.3	79.1	78.5	68.7 70.7	74.6	72.0 71.1	73.7 74.6	53.4 68.2	65.6	58.9 69.7	69.1 81.4	53.4 66.4

Source: [3]

- Classification performs better on smaller sentences (MOH-X)
- Köper et al. outperform both models for TroFi. Interpretation: Abstractness and imaginability ratings of surrounding words correlate to metaphor labels
- On VUA dataset the sequence classifier performs better Interpretation: Prediciting labels on all POS helps to classify target

VUA shared task	Introduction 00	LSTM 000000	Embeddings 00000000000	Model 0000	Datasets 000	Experiments 00000€00000000	References
Compariso	on						

- The paper's approach performs comparably well on all datasets.
- For TroFi and MOH-X, the classification task performs better
- In VUA, where all words are labeled, sequence classifier is preferred

Comparison with THU NGN

P	R	F1	Acc.
68.6 60.8	45.2 70.0	54.5 65.1	90.6
	P 68.6 60.8 71.6	P R 68.6 45.2 60.8 70.0 71.6 73.6	P R F1 68.6 45.2 54.5 60.8 70.0 65.1 71.6 73.6 72.6

Figure: Performance on the VUA sequence labeling test set for all POS tags

Source: [3]

Using ELMo improves state-of-the-art model (by Wu et al., 2018)

Effects of Contextual Word Representation

Model	P	R	F1.	Acc.
SEQ	68.3	72.0	70.4	83.5
-ELMo	59.4	64.3	61.7	78.2
CLS	52.4	63.0	57.3	74.3
-ELMo	52.0	48.7	50.8	74.1

Figure: Ablation study on VUA development set

Source: [3]

VUA shared task Introduction LSTM Embeddings Model Datasets Coordinate Coordi

Sequence Labeling in Detail

POS	#	% metaphor	P	R	F1.
VERB	20K	18.1	68.1	71.9	69.9
NOUN	20K	13.6	59.9	60.8	60.4
ADP	13K	28.0	86.8	89.0	87.9
ADJ	9K	11.5	56.1	60.6	58.3
PART	3K	10.1	57.1	59.1	58.1

Source: [3]

- Performance on POS tags with more training data is higher
- POS tags as part of multi-word expressions are difficult to classify: 'Put **down** the disturbances'

100 errors occuring in the best model tested on the VUA development set were analysed: Metaphor classes in VUA sould help analysing: *direct metaphor, indirect metaphor, implicit metaphor, personification, borderline case* False positives / false negatives

- 31 / 33 % depend on implicit arguments (not in context)
- 20 / 50 % borderline cases
- $\bullet\,$ / 18 % personifications
- 15 / % have long range dependencies (> 4 words)
- $\bullet~10$ / % arguments with rare word sense

For false negatives as well as for false positives borderline cases are crucial: Metaphor annotation still is a subjective task.

VUA shared task	Introduction	LSTM 000000	Embeddings 00000000000	Model 0000	Datasets 000	Experiments 000000000000000000000000000000000000	References
Positives							

Indirect metaphor So they bought immunity.

CLS: X SEQ: X

Personification He thought of thick, fat, hot motorways <u>carving</u> up that land.

CLS: X SEQ: 🗸

Direct metaphor In reality you just invent a tale, as if you were sitting round a fire in a cave.

CLS: X SEQ: X

VUA shared task 00000000	Introduction	LSTM 000000	Embeddings	Model 0000	Datasets 000	Experiments 0000000000000000	References
Challenges							

The model apparently does not cover...

- Borderline cases
- Long context
- Less frequently used words

For false negatives as well as for false positives borderline cases are crucial: Metaphor annotation still is a subjective task!

VUA shared task	Introduction	LSTM	Embeddings	Model	Datasets	Experiments	References
						000000000000000000	

Discussion

VUA shared task	Introduction	LSTM	Embeddings	Model	Datasets	Experiments	References
						0000000000000000	

Thank you.

- VUA shared task Introduction Embeddings Model Datasets Experiments References [1] B. Beilharz. Elmo: Embeddings from language models. 2019. [2] H. Chang. Visualizing elmo contextual vectors. Towards DataScience, 2019. [3] G. Gao, E. Choi, Y. Choi, and L. Zettlemoyer. Neural metaphor detection in context. In EMNLP, 2018. [4] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780, Nov. 1997. [5] C. W. Leong, B. B. Klebanov, and E. Shutova. A report on the 2018 vua metaphor detection shared task. 2018. [6] S. M. Mohammad, E. Shutova, and P. D. Turney. Metaphor as a medium for emotion: An empirical study. 2016. [7] C. Olah. Neural networks, types, and functional programming. 2015. [8] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. 2014. [9] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark,
 - K. Lee, and L. Zettlemoyer. Deep contextualized word representations. *CoRR*, abs/1802.05365, 2018.

[10] C. Wu, F. Wu, Y. Chen, and S. Wu. Neural metaphor detecting with cnn-lstm model. 2018.