Linguistic Knowledge for Statistical Machine Translation

Alexander Fraser

Visiting: ICL, Uni Heidelberg Permanent: CIS, Uni München

22. April 2014 - Uni Heidelberg

Hauptseminar: Linguistic Knowledge for SMT

- Hauptseminar meeting on Tuesdays at 11:15
- Prerequisite: a course on statistical machine translation (SMT), talk to me otherwise, after class or at office hours (15:00-16:00 Tuesdays, i.e., today)
- Usual setup: Referat + Hausarbeit (6-10 pages + references) on a research topic
- If you strongly prefer, I may be able to give you a project this will be more work (and also involve a Referat).
- Referat: English preferred.

Information about you

- Please download the text file from the course web page
- Contains a few questions about your background (courses, human languages)
- I will use this to put together a list of topics which will be presented next week, you will then email me with preferences
- You may also request specific topics (you might have an idea about this after today's lecture, or some use of Google Scholar)

Today

- I did my PhD in 2007 at the University of Southern California / Information Sciences Institute with Daniel Marcu, the topic was word alignment.
- After that I moved to the University of Stuttgart, and recently to LMU München
- I work on a number of things (including cross-language information retrieval and syntactic parsing), but this is now my primary research area
- Today I will lecture about my work on translating from and to morphologically rich languages (mostly German for this talk)
- This is one way (of very many!) to deal with integrating linguistic knowledge into SMT
- Feel free to ask questions during the talk

Next week

- Looking for a volunteer for next week, the Referat will cover two basic papers focusing on preprocessing:
- Empirical Methods for Compound Splitting. Philipp Koehn and Kevin Knight. EACL 2003. (German compound splitting)
- Improving Statistical MT Through Morphological Analysis. Sharon Goldwater and David McClosky. EMNLP 2005. (Reducing inflection)

• Questions before we start?

Linguistic Knowledge for Statistical Machine Translation

- Most research on statistical machine translation (SMT) is on translating into English, which is a **morphologically-not-at-all-rich** language, with significant interest in **morphological reduction**
- Recent interest in the other direction requires morphological generation
- We will start with a very brief review of MT and SMT

Research on machine translation - past

(1970-present) Previous generation: So-called "Rule-based"

- Parse source sentence with rule-based parser
- Transfer source syntactic structure using hand-written rules to obtain target language representation
- Generate text from target language representation
- Scattered using of machine learning, particularly in parsing (recently in generation as well)

Research on machine translation - current generation

About 2000: Start of current generation: "Statistical Machine Translation"

- Relies only on corpus statistics, no linguistic structure (this will be explained further)
- First commercial product in 2004: Language Weaver Arabic/English (I was the PI of this)
- Google Translate and Bing, others

The situation now (for this talk)

• Realization that high quality machine translation requires modeling linguistic structure is widely held (even at Google)

- Realization that high quality machine translation requires modeling linguistic structure is widely held (even at Google)
- Significant research efforts in Europe, USA, Asia on incorporating syntax in inference, but good results still limited to a handful of language pairs

- Realization that high quality machine translation requires modeling linguistic structure is widely held (even at Google)
- Significant research efforts in Europe, USA, Asia on incorporating syntax in inference, but good results still limited to a handful of language pairs
- Only scattered work on incorporating morphology in inference

- Realization that high quality machine translation requires modeling **linguistic structure** is widely held (even at Google)
- Significant research efforts in Europe, USA, Asia on incorporating syntax in inference, but good results still limited to a handful of language pairs
- Only scattered work on incorporating morphology in inference
- Difficulties to beat previous generation rule-based systems, particularly when the target language is **morphologically rich** and **less configurational** than English, e.g., German, Arabic, Czech and many more languages

- Realization that high quality machine translation requires modeling **linguistic structure** is widely held (even at Google)
- Significant research efforts in Europe, USA, Asia on incorporating syntax in inference, but good results still limited to a handful of language pairs
- Only scattered work on incorporating morphology in inference
- Difficulties to beat previous generation rule-based systems, particularly when the target language is **morphologically rich** and **less configurational** than English, e.g., German, Arabic, Czech and many more languages
- First attempts to integrate semantics

- Realization that high quality machine translation requires modeling **linguistic structure** is widely held (even at Google)
- Significant research efforts in Europe, USA, Asia on incorporating syntax in inference, but good results still limited to a handful of language pairs
- Only scattered work on incorporating morphology in inference
- Difficulties to beat previous generation rule-based systems, particularly when the target language is **morphologically rich** and **less configurational** than English, e.g., German, Arabic, Czech and many more languages
- First attempts to integrate semantics
- This progression (mostly) parallels the development of rule-based MT, with the noticeable exception of morphology

Statistical machine translation (SMT) uses automatically learned rules. SMT is following same progression as previous generation rule-based:

Word-based

- Word-based
- Phrase-based (unique to SMT)

- Word-based
- Phrase-based (unique to SMT)
- Morphology

- Word-based
- Phrase-based (unique to SMT)
- Morphology
- Syntax

- Word-based
- Phrase-based (unique to SMT)
- Morphology
- Syntax
- Semantics

- Word-based
- Phrase-based (unique to SMT)
- Morphology
- Syntax
- Semantics
- Text Structure/Pragmatics

- Word-based
- Phrase-based (unique to SMT)
- Morphology
- Syntax
- Semantics
- Text Structure/Pragmatics
- World Knowledge

- Word-based
- Phrase-based (unique to SMT)
- Morphology
- Syntax
- Semantics
- Text Structure/Pragmatics
- World Knowledge
- We need all of these levels of representation to reach perfect machine translation!
- This talk will focus on integrating morphological and syntactic modeling into SMT
- We have also started integrating semantics, have some ideas about text structure/pragmatics

Outline

- History
- Basic statistical approach
- Word alignment (morphologically rich)
- Translating from morphologically rich to less rich
- Improved translation to morphologically rich languages
 - Translating English clause structure to German
 - Morphological generation
 - Adding lexical semantic knowledge to morphological generation
- Bigger picture: questions about adding more linguistic structure, dealing with ambiguity/underspecification

- Problem definition
- Evaluation
- Linguistic representation
- Model
- Training
- Search

- Problem definition: translate sentences (independently!)
- Evaluation
- Linguistic representation
- Model
- Training
- Search

- Problem definition: translate sentences (independently!)
- Evaluation: use human judgements of quality (and correlated automatic metrics)
- Linguistic representation
- Model
- Training
- Search

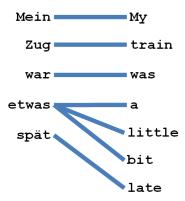
- Problem definition: translate sentences (independently!)
- Evaluation: use human judgements of quality (and correlated automatic metrics)
- Linguistic representation: subject of the rest of this talk
- Model
- Training
- Search

- Problem definition: translate sentences (independently!)
- Evaluation: use human judgements of quality (and correlated automatic metrics)
- Linguistic representation: subject of the rest of this talk
- Model: see next few slides
- Training
- Search

- Problem definition: translate sentences (independently!)
- Evaluation: use human judgements of quality (and correlated automatic metrics)
- Linguistic representation: subject of the rest of this talk
- Model: see next few slides
- Training: see next few slides
- Search

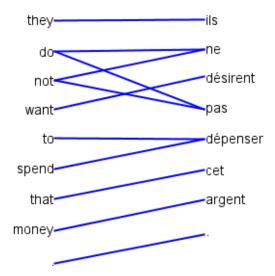
- Problem definition: translate sentences (independently!)
- Evaluation: use human judgements of quality (and correlated automatic metrics)
- Linguistic representation: subject of the rest of this talk
- Model: see next few slides
- Training: see next few slides
- Search: beyond the scope of this talk (think of beam search and CYK+)

Basic non-linguistic representation - word alignment

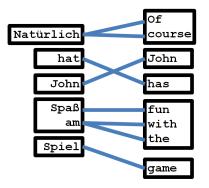


Word alignment: bigraph, connected components show "minimal translation units"

Introduction to SMT - Word Alignment



Phrase-based SMT (Koehn's example) - German to English



Phrase pairs are either minimal translation units or contiguous groups of them (e.g., spass -> fun, am -> with the). Often not linguistic phrases!

- German word sequence is segmented into German phrases seen in the word aligned training data
- German phrases are used to produce English phrases
- English phrases are reordered

Start with a large collection of parallel documents (for instance: Proceedings of the European Parliament)

Start with a large collection of parallel documents (for instance: Proceedings of the European Parliament)

Identify parallel sentences

Start with a large collection of parallel documents (for instance: Proceedings of the European Parliament)

Identify parallel sentences

(Braune and Fraser COLING 2010), others

Start with a large collection of parallel documents (for instance: Proceedings of the European Parliament)

Identify parallel sentences

(Braune and Fraser COLING 2010), others

Compute word alignments:

Start with a large collection of parallel documents (for instance: Proceedings of the European Parliament)

Identify parallel sentences

(Braune and Fraser COLING 2010), others

Compute word alignments:

using an unsupervised generative model

Start with a large collection of parallel documents (for instance: Proceedings of the European Parliament)

Identify parallel sentences	(Braune COLING		
Compute word alignments:			
using an unsupervised generative model	(Brown Fraser EMNLP 2	and	1993, Marcu

Start with a large collection of parallel documents (for instance: Proceedings of the European Parliament)

Identify parallel sentences	(Braune and Fraser COLING 2010), others
Compute word alignments:	
using an unsupervised generative model	(Brown et al 1993, Fraser and Marcu EMNLP 2007)

using a supervised discriminative model

Start with a large collection of parallel documents (for instance: Proceedings of the European Parliament)

Identify parallel sentences	(Braune and Fraser COLING 2010), others
Compute word alignments:	
using an unsupervised generative model	(Brown et al 1993, Fraser and Marcu EMNLP 2007)
using a supervised discriminative model	many models including (Fraser and Marcu ACL- WMT 2005), (Fraser and Marcu ACL 2006)

Start with a large collection of parallel documents (for instance: Proceedings of the European Parliament)

Identify parallel sentences	(Braune and Fraser COLING 2010), others
Compute word alignments:	
using an unsupervised generative model	(Brown et al 1993, Fraser and Marcu EMNLP 2007)
using a supervised discriminative model	many models including (Fraser and Marcu ACL- WMT 2005), (Fraser and Marcu ACL 2006)

or a semi-supervised model combining these

Start with a large collection of parallel documents (for instance: Proceedings of the European Parliament)

Identify parallel sentences	(Braune and Fraser COLING 2010), others
Compute word alignments:	
using an unsupervised generative model	(Brown et al 1993, Fraser and Marcu EMNLP 2007)
using a supervised discriminative model	many models including (Fraser and Marcu ACL- WMT 2005), (Fraser and Marcu ACL 2006)
or a semi-supervised model combining these	(Fraser and Marcu ACL 2006)

Linguistic Knowledge for SM7

Given a word aligned parallel corpus, learn to translate unseen sentences (supervised structured learning)

- Learn a phrase lexical translation sub-model and a phrase reordering sub-model from the word alignment (Och and Ney 2004; Koehn, Och, Marcu 2003)
- Combine these with other knowledge sources to learn a full model of translation (Och and Ney 2004)
- Most important other knowledge source: monolingual n-gram language model in the target language
 - Models "fluency", good target language sentences
- IMPORTANT: no explicit linguistic knowledge (syntactic parses, morphology, etc)!

Challenges

• The challenges I am currently focusing on:

- How to generate morphology (for German or French) which is more specified than in the source language (English)?
- How to translate from a configurational language (English) to a less-configurational language (German)?
- Which linguistic representation should we use and where should specification happen?

configurational roughly means "fixed word order" here

Our work

- DFG project: 3 year project (recently renewed for 3 more years)
- Combined with support from the FP7 TTC project: Terminology Extraction, Translation Tools and Comparable Corpora
- Basic research question: can we integrate linguistic resources for morphology and syntax into (large scale) statistical machine translation?
- Will talk about German/English word alignment and translation from German to English briefly
- Primary focus: translation from English (and French) to German
- Secondary: translation to French, others (recently: Russian, not ready yet)

Lessons: word alignment

- My thesis was on word alignment...
- Our work in the project shows that word alignment involving morphologically rich languages is a task where:
 - One should throw away inflectional marking (Fraser ACL-WMT 2009)
 - One should deal with compounding by aligning split compounds (Fritzinger and Fraser ACL-WMT 2010)
 - Syntactic information doesn't seem to help much (at least for training phrase-based SMT models)

- Parse the German, and deterministically reorder it to look like English "ich habe gegessen einen Erdbeerkuchen" (Collins, Koehn, Kucerova 2005; Fraser ACL-WMT 2009)
 - German main clause order: I have a strawberry cake eaten
 - Reordered (English order): I have eaten a strawberry cake

- Parse the German, and deterministically reorder it to look like English "ich habe gegessen einen Erdbeerkuchen" (Collins, Koehn, Kucerova 2005; Fraser ACL-WMT 2009)
 - German main clause order: I have a strawberry cake eaten
 - Reordered (English order): I have eaten a strawberry cake
- Split German compounds ("Erdbeerkuchen" -> "Erdbeer Kuchen") (Koehn and Knight 2003; Fritzinger and Fraser ACL-WMT 2010)

- Parse the German, and deterministically reorder it to look like English "ich habe gegessen einen Erdbeerkuchen" (Collins, Koehn, Kucerova 2005; Fraser ACL-WMT 2009)
 - German main clause order: I have a strawberry cake eaten
 - Reordered (English order): I have eaten a strawberry cake
- Split German compounds ("Erdbeerkuchen" -> "Erdbeer Kuchen") (Koehn and Knight 2003; Fritzinger and Fraser ACL-WMT 2010)
- Keep German noun inflection marking plural/singular, throw away most other inflection ("einen" -> "ein") (Fraser ACL-WMT 2009)

- Parse the German, and deterministically reorder it to look like English "ich habe gegessen einen Erdbeerkuchen" (Collins, Koehn, Kucerova 2005; Fraser ACL-WMT 2009)
 - German main clause order: I have a strawberry cake eaten
 - Reordered (English order): I have eaten a strawberry cake
- Split German compounds ("Erdbeerkuchen" -> "Erdbeer Kuchen") (Koehn and Knight 2003; Fritzinger and Fraser ACL-WMT 2010)
- Keep German noun inflection marking plural/singular, throw away most other inflection ("einen" -> "ein") (Fraser ACL-WMT 2009)
- Apply standard phrase-based techniques to this representation

- I described how to integrate syntax and morphology deterministically for this task
- We don't see the need for modeling morphology in the translation model for German to English: simply preprocess
- But for getting the target language word order right, we should be using reordering models, not deterministic rules
 - This allows us to use target language context (modeled by the language model)
 - Critical to obtaining well-formed target language sentences

Long-distance reordering during inference - N-gram system

- We have developed a system which uses n-grams of *minimal translation units* rather than phrases (this is called N-Gram SMT)
- Our contribution to N-Gram SMT is that we have added reordering (previous work models only lexical choice)
- One aspect of this work is that we have lexicalized target jump positions
 - Consider generating German in English order...
 - I Ich, have habe, INSERT-GERMAN-GAP, eaten gegessen, JUMP-BACK-TO-GERMAN-GAP, cookies - Kekse
 - This is a lingustic-knowledge-free way of handling German syntax and is very powerful
 - Better performance than phrase-based model in German to English and French to English evaluations
 - See (Durrani, Schmid, Fraser ACL 2011) for details
- However, this does not solve the long-distance reordering problem completely, there is clearly the need for linguistic knowledge
- We are adding syntactic knowledge to this model

Long-distance reordering during inference - Hiero - 1 of 2

- We also work with decoders based on SCFG (Synchronous Context-Free Grammar)
- One framework is called Hiero (Chiang 2007)
- In Hiero, hierarchical phrase pairs are made by taking a larger phrase pair and subtracting out one or more smaller phrase pairs
- For instance:
 - "habe X₁ gegessen -> have eaten X₁"
 - ► X₁ will be replaced by another hierarchical phrase pair
- Popular framework, no explicit linguistic knowledge, only implicitly learned from word alignment

Long-distance reordering during inference - Hiero - 2 of 2

- We have worked on making Hiero able to deal with reorderings up to 50 words (not uncommon in German newspaper text!)
 - Found that Hiero requires knowledge of German clause structure and verbal complex
 - It seems likely that this result holds for all hierarchical systems (due to data sparsity)
 - Implemented improvements using hard constraints, see (Braune, Gojun, Fraser EAMT 2012)
- Current work involves tight integration of Vowpal Wabbit classifier (Langford) into Moses SMT toolkit
- Models hierarchical phrase pair choices given source language syntactic context obtained from a parser (Braune, Fraser, Daume, Carpuat, JHU Summer Workshop Team - in preparation)

English to German is a challenging problem - previous generation rule-based systems still superior, but gap rapidly narrowing as we generalize better and better

• Use classifiers to classify English clauses with their German word order

- Use classifiers to classify English clauses with their German word order
- Predict German verbal features like person, number, tense, aspect

- Use classifiers to classify English clauses with their German word order
- Predict German verbal features like person, number, tense, aspect
- Use phrase-based model to translate English words to German lemmas (with split compounds)

- Use classifiers to classify English clauses with their German word order
- Predict German verbal features like person, number, tense, aspect
- Use phrase-based model to translate English words to German lemmas (with split compounds)
- Create compounds by merging adjacent lemmas
 - Use a sequence classifier to decide where and how to merge lemmas to create compounds

- Use classifiers to classify English clauses with their German word order
- Predict German verbal features like person, number, tense, aspect
- Use phrase-based model to translate English words to German lemmas (with split compounds)
- Create compounds by merging adjacent lemmas
 - Use a sequence classifier to decide where and how to merge lemmas to create compounds
- Determine how to inflect German noun phrases (and prepositional phrases)
 - Use a sequence classifier to predict nominal features

(SL) [Yesterday I read a book][which I bought last week] (SL reordered) [Yesterday read I a book][which I last week bought] (TL) [Gestern las ich ein Buch][das ich letzte Woche kaufte]

(SL) [Yesterday I read a book][which I bought last week] (SL reordered) [Yesterday read I a book][which I last week bought] (TL) [Gestern las ich ein Buch][das ich letzte Woche kaufte]

• Use deterministic reordering rules to reorder English parse tree to German word order, see (Gojun, Fraser EACL 2012)

(SL reordered) [Yesterday read I a book][which I last week bought] (TL) [Gestern las ich ein Buch][das ich letzte Woche kaufte]

(SL) [Yesterday I read a book] [which I bought last week]

- Use deterministic reordering rules to reorder English parse tree to German word order, see (Gojun, Fraser EACL 2012)
- Translate this representation to obtain German lemmas

(SL reordered) [Yesterday read I a book][which I last week bought] (TL) [Gestern las ich ein Buch][das ich letzte Woche kaufte]

(SL) [Yesterday I read a book] [which I bought last week]

- Use deterministic reordering rules to reorder English parse tree to German word order, see (Gojun, Fraser EACL 2012)
- Translate this representation to obtain German lemmas
- Finally, predict German verb features. Both verbs in example: <first person, singular, past, indicative>

(SL reordered) [Yesterday read I a book][which I last week bought] (TL) [Gestern las ich ein Buch][das ich letzte Woche kaufte]

(SL) [Yesterday I read a book] [which I bought last week]

- Use deterministic reordering rules to reorder English parse tree to German word order, see (Gojun, Fraser EACL 2012)
- Translate this representation to obtain German lemmas
- Finally, predict German verb features. Both verbs in example: <first person, singular, past, indicative>
- New work on this uses lattices to represent alternative clausal orderings (e.g., "las", "habe ... gelesen")

Word formation: dealing with compounds

- German compounds are highly productive and lead to data sparsity. We split them in the training data using corpus/linguistic knowledge techniques (Fritzinger and Fraser ACL-WMT 2010)
- At test time, we translate English test sentence to the German split lemma representation split Inflation<+NN><Fem><Sg> Rate<+NN><Fem><Sg>
- Determine whether to merge adjacent words to create a compound (Stymne & Cancedda 2011)
 - Classifier is a linear-chain CRF using German lemmas (in split representation) as input

compound Inflationsrate<+NN><Fem><Sg>

- Initial implementation documented in (Fraser, Weller, Cahill, Cap EACL 2012)
- New approach additionally using machine learning features on the syntax of the aligned English (Cap, Fraser, Weller, Cahill EACL 2014)

Predicting nominal inflection

Idea: separate the translation into two steps:

- (1) Build a translation system with non-inflected forms (lemmas)
- (2) Inflect the output of the translation system
 - a) predict inflection features using a sequence classifier
 - b) generate inflected forms based on predicted features and lemmas

Example: baseline vs. two-step system

- A standard system using inflected forms needs to decide on one of the possible inflected forms: blue → blau, blaue, blauer, blaues, blauen, blauem
- A translation system built on lemmas, followed by inflection prediction and inflection generation:
 - (1) blue \rightarrow blau<ADJECTIVE>
 - (2) blau<ADJECTIVE><nominative><feminine><singular>
 <weak-inflection> → blaue

Inflection - example

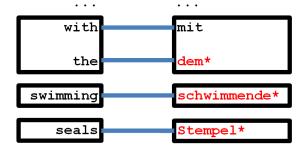
Suppose the training data is typical European Parliament material and this sentence pair is also in the training data.

We would like to translate: "... with the swimming seals"

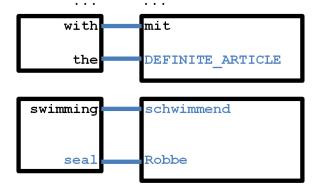
Alexander Fraser (Uni Heidelberg)

Linguistic Knowledge for SM7

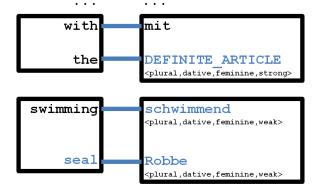
Inflection - problem in baseline



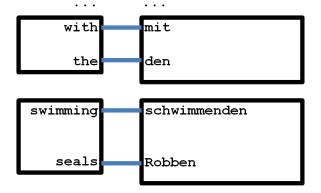
Dealing with inflection - translation to underspecified representation



Dealing with inflection - nominal inflection features prediction



Dealing with inflection - surface form generation



Sequence classification

- Initially implemented using simple language models (input = underspecified, output = fully specified)
- Linear-chain CRFs work much better
- We use the Wapiti Toolkit (Lavergne et al., 2010)
- We use a huge feature space
 - 6-grams on German lemmas
 - 8-grams on German POS-tag sequences
 - various other features including features on aligned English
 - L1 regularization is used to obtain a sparse model
- See (Fraser, Weller, Cahill, Cap EACL 2012) for more details
- We'd like to integrate this into the Moses SMT toolkit in future work (however, tractability will be a challenge!)
- Here are two examples (French first)...

stemmed SMT-output	predicted	inflected	after post-	gloss
	features	forms	processing	
le[DET]				the
plus[ADV]				most
grand[ADJ]				large
démocratie <fem>[NOM]</fem>				democracy
musulman[ADJ]				muslim
dans[PRP]				in
le[DET]				the
histoire <fem>[NOM]</fem>				hist ory

stemmed SMT-output	predicted	inflected	after post-	gloss
	features	forms	processing	
le[DET]	DET-Fem Sg			the
plus[ADV]	ADV			most
grand[ADJ]	ADJ-Fem Sg			large
démocratie <fem>[NOM]</fem>	NOM-Fem.Sg			democracy
musulman[ADJ]	ADJ-Fem.Sg			muslim
dans[PRP]	PRP			in
le[DET]	DET-Fem.Sg			the
histoire <fem>[NOM]</fem>	NOM-Fem Sg			hist ory

stemmed SMT-output	predicted	inflected	after post-	gloss
	features	forms	processing	
le[DET]	DET-Fem Sg	la		the
plus[ADV]	ADV	plus		most
grand[ADJ]	AD J-Fem Sg	grande		large
démocratie <fem>[NOM]</fem>	NOM-Fem.Sg	démocratie		democracy
musulman[ADJ]	ADJ-Fem Sg	musulmane		muslim
dans[PRP]	PRP	dans		in
le[DET]	DET-Fem Sg	la		the
histoire <fem>[NOM]</fem>	NOM-Fem.Sg	histoire		hist ory

stemmed SMT-output	predicted	inflected	after post-	gloss
	features	forms	processing	
le[DET]	DET-Fem Sg	la	la	the
plus[ADV]	ADV	plus	plus	most
grand[ADJ]	AD J-Fem Sg	grande	grande	large
démocratie <fem>[NOM]</fem>	NOM-Fem.Sg	démocratie	démocratie	democracy
musulman[ADJ]	ADJ-Fem Sg	musulmane	musulmane	muslim
dans[PRP]	PRP	dans	dans	in
le[DET]	DET-Fem Sg	la	'	the
histoire <fem>[NOM]</fem>	NOM-Fem.Sg	histoire	histoire	hist ory

Overview of the inflection process

stemmed SMT-output	predicted	inflected	after post-	gloss
	features	forms	processing	
le[DET]	DET Fem Sg	la	la	the
plus[ADV]	ADV	plus	plus	most
grand[ADJ]	AD J-Fem.Sg	grande	grande	large
démocratie <fem>[NOM]</fem>	NOM-Fem.Sg	démocratie	démocratie	democracy
musulman[ADJ]	ADJ-Fem.Sg	musulmane	musulmane	muslim
dans[PRP]	PRP	dans	dans	in
le[DET]	DET Fem Sg	la	1'	the
histoire <fem>[NOM]</fem>	NOM-Fem Sg	histoire	histoire	history

Next step

Combine this with bilingual terminology mining (Daille and Morin 2008), this enables **context-dependent** inflection of mined terminology in translation

Feature prediction and inflection: example

English input these buses may have access to that country [...]

SMT output	predicted features	inflected forms	gloss
solche<+INDEF> <pro></pro>	PIAT-Masc.Nom.Pl.St	solche	such
Bus<+NN> <masc><pl></pl></masc>	NN-Masc.Nom.Pl.Wk	Busse	buses
haben <vafin></vafin>	haben <v></v>	haben	have
dann <adv></adv>	ADV	dann	then
zwar <adv></adv>	ADV	zwar	though
Zugang<+NN>< <u>Masc</u> >< <u>Sg</u> >	NN-Masc.Acc.Sg.St	Zugang	access
zu <appr><dat></dat></appr>	APPR-Dat	zu	to
die<+ART> <def></def>	ART-Neut.Dat.Sg.St	dem	the
betreffend<+ADJ> <pos></pos>	ADJA-Neut.Dat.Sg.Wk	betreffenden	respective
Land<+NN> <neut><sg></sg></neut>	NN-Neut.Dat.Sg.Wk	Land	country

Extending inflection prediction using knowledge of subcategorization

- Subcategorization knowledge captures information about arguments of a verb (e.g., what sort of direct objects are allowed (if any))
- Working on two approaches for adding subcategorization information into SMT
 - Using German subcategorization information extracted from web corpora to improve case prediction for contexts suffering from sparsity
 - Using machine learning features based on semantic roles from the English source sentence (obtained through dependency parsing
- Unique in terms of directly integrating lexical semantic research into statistical machine translation
- See (Weller, Fraser, Schulte im Walde ACL 2013) for more details

Future work - text structure/pragmatics

First steps towards using text structure/pragmatics in SMT. Breaking the sentence independence assumption:

- Using coreference models, initially for underspecified pronouns:
 - What is gender of "it" in English when translated to German? (we have completed an initial study)
 - Translating from Subject-Drop languages like Spanish/Italian/Czech/Arabic: which pronoun should be used in the translation? (we have some work on this already)
- Consistent lexical choice across sentences (Carpuat, others have initial work here)
- Many other problems here, many of which have never been solved (even in rule-based MT)
- Starting point: see (Hardmeier 2013) for a comprehensive survey

Lessons/questions for translating to other morphologically rich languages

- Should we directly predict surface forms (Toutanova et al 2008), or predict linguistic features and generate (or work)?
 - What role does language syncretism (irregular dropped inflection) play?
- German: rule-based morphological analysis/generation and statistical disambiguation. The right combination for other languages?
- How should we better model ambiguity in word formation? (Lattices?) What role does the compositionality assumption play?
- I mostly discussed nominal inflection (See (de Gispert and Mariño) for Spanish verbal inflection)
 - ► How to deal with reflexives and other complex verbal phenomena?
- El Kholy and Habash: for Arabic only number and gender should be predicted (translate determiners). Automate determining this?
- Where to enrich the source language rather than target? (Oflazer, others)
- Sequence models work for English (configurational) and somewhat for German (less-configurational)
 - What about non-configurational (Czech, Russian, etc)?

Conclusion

- In my opinion: the key questions in statistical machine translation are about linguistic representation and learning from data
- I presented what we have done so far and how we plan to continue
 - I focused mostly on linguistic representation
 - I discussed some syntax, and talked a lot about morphological generation (skipping many details of things like portmanteaus)
 - We solve interesting machine learning and computer science problems as well (most details were skipped)
 - In future work, we will integrate these techniques more tightly into inference (decoding)
- Credits: Marion Weller, Fabienne Cap, Fabienne Braune, Anita Ramm, Aoife Cahill, Helmut Schmid, Sabine Schulte im Walde, Hinrich Schütze, others in my group...
- Funding: Deutsche Forschungsgemeinschaft, EU FP7 TTC project: Terminology Extraction, Translation Tools and Comparable Corpora

Next week

- Looking for a volunteer for next week, the Referat will cover two basic papers focusing on preprocessing:
- Empirical Methods for Compound Splitting. Philipp Koehn and Kevin Knight. EACL 2003. (German compound splitting)
- Improving Statistical MT Through Morphological Analysis. Sharon Goldwater and David McClosky. EMNLP 2005. (Reducing inflection)

Thank you!

Thank you!

Alexander Fraser (Uni Heidelberg) Linguistic Knowledge for SMT