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Abstract

Empirical methods are means to answering methodological questions of empirical
sciences by statistical techniques. The methodological questions addressed in this book
include the problems of validity, reliability, and significance. In the case of machine
learning, these correspond to the questions of whether a model predicts what it purports
to predict, whether a model’s performance is consistent across replications, and whether
a performance difference between two models is due to chance, respectively. The goal of
this book is to answer these questions by concrete statistical tests that can be applied
to assess validity, reliability, and significance of data annotation and machine learning
prediction in the fields of NLP and data science.

Our focus is on model-based empirical methods where data annotations and model
predictions are treated as training data for interpretable probabilistic models from the
well-understood families of generalized additive models (GAMs) and linear mixed effects
models (LMEMs). Based on the interpretable parameters of the trained GAMs or
LMEMs, the book presents model-based statistical tests such as a validity test that allows
detecting circular features that circumvent learning. Furthermore, the book discusses a
reliability coefficient using variance decomposition based on random effect parameters
of LMEMs. Last, a significance test based on the likelihood ratios of nested LMEMs
trained on the performance scores of two machine learning models is shown to naturally
allow the inclusion of variations in meta-parameter settings into hypothesis testing, and
further facilitates a refined system comparison conditional on properties of input data.

This book can be used as an introduction to empirical methods for machine learning
in general, with a special focus on applications in NLP and data science. The book is
self-contained with an appendix on the mathematical background on GAMs and LMEMs,
and with an accompanying webpage including R code to replicate experiments presented
in the book.
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Preface

There is a particular book that accompanied the first author since his days as doctoral
student: Paul R. Cohen’s textbook Empirical Methods for Artificial Intelligence [Cohen,
1995]. The book was introduced to him by Mark Johnson, with the recommendation that
it contained essential information for an empirical researcher that is not easily available
in a comparably concise form anywhere else. This assessment of Cohen’s book is still
valid today.

Myriad books on machine learning, deep learning, and artificial intelligence have been
published since Cohen’s book appeared in 1995. With rare exceptions such as Hardt
and Recht [2021], however, questions about data practices, the concepts of validity and
reliability, or techniques of exploratory data analysis are not mentioned in contemporary
books on machine learning. A discussion of confirmatory techniques for statistical
hypothesis testing and their relevance for practical machine learning research is also not
integrated in most machine learning textbooks. For these topics, Cohen’s exposition of
exploratory and confirmatory techniques of empirical science is still the to-go textbook.
However, Cohen’s book has not been updated since its publication date.

The goal of our book is to extend and update Cohen’s book using model-based
techniques to address the questions of validity, reliability, and significance in empirical
machine learning research. In our book, these techniques are based on interpretable
probabilistic models as described in Wood [2017]. These models are not necessarily
more recent than Cohen’s book, but they possess the necessary expressiveness to model
experimental data from data annotation and machine learning prediction experiments,
and they are associated with proven statistical properties for drawing inferences about the
parameters and models. The goal of our book is to provide the reader with an instrument
in the form of model-based statistical tests that enables assessing the methodological
questions of validity, reliability, and significance. We showcase our techniques on examples
from the authors’ areas of expertise — NLP and medical data science — and hope that
the proposed techniques will also be of use to readers from other areas of machine learning
and artificial intelligence.
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1. Introduction

1.1. Empirical Methods in Machine Learning

Machine learning is a research field that has been explored for several decades, and
recently has begun to affect many areas of modern life under the reinvigorated label
of artificial intelligence. The goal of machine learning can be described as learning a
mathematical function to make predictions on unseen test data, based on given training
data, without explicit programmed instructions on how to perform the task. The methods
employed for learning functional relationships between inputs and outputs heavily build
on methods of mathematical optimization [Bottou et al., 2018]. While optimization
problems are formalized as minimization of empirical risk functions on given training
data, the important twist in machine learning is that it aims to optimize prediction
performance in expectation, thus enabling generalization to unseen test data. The
development and analysis of techniques for generalization is the topic of the dedicated
sub-field of statistical learning theory [Bousquet et al., 2004, Vapnik, 1998, von Luxburg
and Schölkopf, 2011]. Statistical learning theory can be seen as the methodological
basis of machine learning, and central concepts of statistical learning theory have been
compared to Popper’s ideas of falsifiability of a scientific theory [Corfield et al., 2009].
In a similar spirit, comparisons of the methodology of machine learning and empirical
science have led to direct advertisements of ”Machine Learning as Philosophy of Science”
[Korb, 2004].

Let us contrast this proposition with the practical workflow of a machine learning
researcher conducting empirical research in natural language processing (NLP) and
data science. Most empirical research in these areas follows the paradigm of adopting
or establishing a set of input representations and output labels that are split into
portions for training, development, and testing. The data in these splits are assumed to
represent independent samples from an identical distribution (so-called i.i.d. samples).
Furthermore, data in the splits are made i.i.d. artificially, e.g., by shuffling data at
random between splits [Arjovsky et al., 2019] or by experience replay [Schölkopf, 2019].
The i.i.d. assumption is crucial for the consistency guarantees from statistical learning
theory to apply [Vapnik, 1998, von Luxburg and Schölkopf, 2011]. Furthermore, it can
be seen an acknowledgment of basic principles of experimental control by a randomized
experimental design [Cox and Reid, 2000, Mead et al., 2012]. A typical NLP or data
science project then starts with optimizing the parameters of a machine learning model
on given training data, tuning meta-parameters on development data, and ends with
testing the model using a standard automatic evaluation metric on benchmark test data.
We call this scheme of a machine learning process the train-dev-test paradigm of
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NLP and data science.1

The train-dev-test paradigm allows the researcher to happily focus on improving
model performance, with the only limit being the computational budget to train and
re-train complex models, such as deep neural networks, under extensive exploration of
meta-parameters, but without having to ask any questions about the data themselves,
about what the machine learning model learned from them, or how the learning process
is influenced by diverse sources of variability. Such questions are typically thought of
as extraneous to the machine learning process, and standard statistical learning theory
does not provide answers to them. However, as we will show in this book, processes
like data annotation or model evaluation that happen before or after machine learning
crucially influence the entire machine learning process. The viewpoint advocated in this
book is that answers to questions about bias and consistency in data annotation, about
representations of raw input data, or about variability of machine learning models with
respect to meta-parameters and test data, should be an integral part of the methodology
of machine learning. The current discussion of methodological issues in empirical machine
learning is at the state of informal guidance by Dos and Don’ts [Bowman and Dahl, 2021,
Lones, 2021]. The goal of this book is to analyze problems in the train-dev-test paradigm
from the viewpoint of the methodology of empirical sciences — a point of view that is
independent of and orthogonal to statistical learning theory2 — and to answer them by
concrete statistical techniques.

The methodological questions that will be addressed in this book include the question
of validity — does a machine learning model predict what it purports to predict?
For example, we might want to scrutinize surprisingly good results on hard tasks like
natural language understanding, and ask whether successful machine learning models
do understand language or instead rely on superficial patterns that are highly, but
spuriously, correlated with target classes [Clark et al., 2019]. Similarly, observed supe-
rior performance in data mining might be due to illegitimate leakage of information
correlated with the target [Kaufmann et al., 2011], and exact prediction of the target
in medical informatics might be based on using defining features of the target as input
features to machine learning models in a circular way [Schamoni et al., 2019]. The
second important question that we will address is that of reliability — how consistent
is a performance evaluation if replicated for the same model trained under different
meta-parameter settings? While approaches have been presented that report expected
validation performance with respect to a computational budget instead of reporting only
single best results [Dodge et al., 2019, Henderson et al., 2018, Lucic et al., 2018], it is
furthermore important to analyze the contribution of different sources of variance to
performance results, including model architectures, meta-parameters, and the benchmark

1Clearly, this paradigm is pervasive in machine learning and artificial intelligence in general, for example,
in the area of image processing that uses similar methods and exhibits similar problems as the area
of natural language processing. We will frequently refer to examples from related areas, but keep our
focus on running examples from the areas of NLP and medical data science.

2The orthogonality of our methodological point of view to statistical learning theory is shown by the
fact that it applies to classical learning theory as well as to more recent approaches [Arjovsky et al.,
2019, Kawaguchi et al., 2020, Shen et al., 2021].
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data themselves, in order to make reported results interpretable and replicable. Lastly,
we will discuss the question of significance — how likely is it that an observed difference
between evaluation results of two models is due to chance? The current state-of-the-art
consists of matching performance evaluation metrics to statistical significance tests,
and devising specialized techniques for testing hypotheses across multiple solutions and
multiple test sets [Dror et al., 2020]. However, there exist likelihood-based techniques
that apply to any performance evaluation metric, to multiple test sets, and multiple
meta-parameter settings. Furthermore, these techniques allow the inclusion of variations
in meta-parameter settings or test data into hypothesis testing.

In the mainstream of machine learning research, the questions of validity, reliability,
and significance are addressed by exploratory data analysis and descriptive statistics.
The goal of our work is to address these questions by model-based statistical tests
that treat predictions and performance evaluation scores of machine learning models as
training data for interpretable machine learning models from the well-understood families
of generalized additive models (GAMs) and linear mixed effects models (LMEMs) [Wood,
2017]. We use the term statistical test in a wide sense of basing a decision on a statistic.
In the traditional approach to statistical hypothesis testing, a test statistic is computed
as a function of observed samples, and used to decide between the null hypothesis and
the alternative hypothesis. Model-based statistical tests are based on a probabilistic
model for the observed data that incorporates the quantity that we would like to study,
i.e., the performance difference of two competing algorithms, as a parameter which is
estimated from the data. Such tests are thus formulated in the framework of statistical
inference, with the advantage that they allow generalization beyond a concrete evaluation
experiment of a machine learning model on a particular test set. Furthermore, the same
model-based techniques that are used to analyze predictions of machine learning models
can be applied to address the question of validity of data themselves, and to investigate
the reliability of human data annotation.

1.2. Scope and Outline of this Book

The focus of this book concerns empirical methods that allow for the assessment of the
validity, reliability, and significance of prediction processes in NLP and data science.
We cover prediction by data annotation, concerning the feature-label relation in the
human data annotation process itself, and machine learning prediction, concerning
predictions of labels by applications of machine learning models in NLP and data science.
The book is organized in three main chapters on the topics of validity, reliability, and
significance, respectively. Each chapter is organized by first discussing various theoretical
and philosophical aspects of the respective concept. We take inspiration from these
theoretical discussions to devise concrete tests that allow for the assessment of the validity,
reliability, and significance.

Questions concerning validity in machine learning for NLP and data science are
discussed in Chapter 2. The point of departure is the problem of whether a machine
learning model predicts what it purports to predict. An attempt to formalize this
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concept has been given in measurement theory for psychological tests: ”A test is valid
for measuring an attribute if (a) the attribute exists and (b) variations in the attribute
causally produce variation in the measurement outcomes” [Borsboom et al., 2004]. For
example, a psychological test for developmental stages of children [Inhelder and Piaget,
1958] is valid if children of different ages produce different test results and, conversely,
observed outcomes of a valid test can be used to infer the position of children a discrete
stages of cognitive development. One might be inclined to think that this notion of
validity translates directly into the train-dev-test paradigm. For example, in classification,
a ”variation in the measurement outcome” is achieved by prediction of a class label, which
allows inferring the related ”variation in the attribute” if the prediction of a label for an
input attribute is accurate. However, this definition is not sufficient to determine validity,
as can be best seen with an example. Consider the problem of cross-language information
retrieval (CLIR) on patent data. Relevance labels for training and testing in patent
CLIR are, in practice, created automatically by using citations in other patents [Graf and
Azzopardi, 2008]. Machine learning models such as that of Guo and Gomes [2009] define
domain knowledge ”attributes”, or features, on patent pairs (e.g., same patent class in
the International Patent Classification (IPC)) and retrieval score features (e.g., similarity
of tf-idf representations), to learn to rank relevant documents higher than irrelevant
ones. However, nearly optimal ranking results could be achieved by incorporating patent
citations as feature into the learning-to-rank model. This happened in the CLEF-IP 2010
benchmark competition [Piroi and Tait, 2010] where applicant citations extracted from
the query document were added to the list of retrieval results in the approach of Magdy
and Jones [2010]. Such a model would meet the above sketched validity criterion since
the accuracy of predicting relevance labels is nearly perfect. However, there is a further
criterion of circularity discussed in philosophy of science that must be avoided. Balzer
and Brendel [2019] state that the function to be measured — here the prediction of the
learning-to-rank model — and the function that is given — here the known definition
of gold standard relevance labels — need to be disjoint. This principle is violated if
the citation criteria that are used to define the gold standard labels are incorporated
as features in the data representation, and consequently, as features in the machine
learning model. For this purpose, we develop a statistical test based on fitting GAMs to
feature-label relations in training data or model predictions. This test allows identifying
circularity for machine learning data and black-box machine learning models. Chapter 2
will apply this and other tests to assess the validity of machine learning data and machine
learning predictions, and illustrate the tests of examples from NLP and data science.

Chapter 3 takes inspiration from the definition of reliability in empirical fields, dating
back to the works of Fisher [1925, 1935]. In our case, reliability is concerned with the
consistency of the prediction of labels by human annotators across replications, or with
the consistency of the test data prediction of machine learning models trained under
different meta-parameter settings. Let us illustrate our approach on the problem of
measuring reliability of machine learning predictions. Our approach is to conduct a
variance component analysis [Searle et al., 1992] on random effects of LMEMs that are
fitted to performance evaluation data of complex machine learning models. Reliability
coefficients can be computed by computing intra-class correlation coefficients [Brennan,
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2001, Fisher, 1925] as the ratio of variance attributed to the items of interest, here
test sentences, to total variance. Furthermore, Chapter 3 presents a discussion of the
shortcomings of chance-corrected agreement metrics like Krippendorff’s α, Cohen’s κ, or
Scott’s π that are traditionally used to measure agreement of human annotators in NLP
and data science: Compared to our approach, where reliability is computed based on
variance components of a learned model, these methods are descriptive statistics that
compute a single agreement coefficient directly from observed (dis)agreement patterns
on categorical variables, with no intent to further analyze the computed coefficient, or to
draw conclusion beyond the concrete experiment. We also discuss the advantages and
shortcomings of bootstrap estimates of reliability for model predictions. While bootstrap
estimates do allow generalization across model predictions under concrete meta-parameter
settings, they still do not allow analysis of the reasons for (lacking) reliability. In contrast,
a definition of reliability coefficients based on variance components of learned models
stresses the importance of a comparison of variance between and within test items.
For a machine learning prediction to be reliable, all variance should be explained by
differences between test sentences, not by variations within, due to meta-parameter
variation, random shuffling of training data, or other inherent randomness of machine
learning models. Chapter 3 illustrates these concepts by working through examples for
computing reliability coefficients for prediction experiments for NLP and data science
tasks.

Chapter 4 addresses the question of the statistical significance of a difference between
performance evaluation measurements for predictions in data annotation or in machine
learning. The state-of-the-art in statistical significance testing in NLP and data science
is an abundance of tests among which a match to individual evaluation metrics has
to be found (Dror et al. [2020], Chapter 3), with specialized techniques in order to
deal with multiple outputs or multiple datasets (Dror et al. [2020], Chapters 4 and 5,
respectively). The goal of our discussion is to reinvigorate likelihood-based techniques
for statistical hypothesis testing [Pawitan, 2001] because of their general applicability to
any evaluation metric, to multiple test sets, and to multiple meta-parameter settings.
The generalized likelihood ratio test (GLRT) dates back to the famous Neyman-Pearson
theory [Neyman and Pearson, 1933] and it unfolds its full potential in combination
with model-based reliability analysis using LMEMs [Pinheiro and Bates, 2000]: LMEMs
trained by maximum likelihood estimation on the performance scores of two machine
learning models allow to perform a GLRT that assesses the statistical significance of
a difference in performance scores based on the ”system” effect of the LMEMs fitted
on the performance evaluation data. This is again a model-based approach where the
idea of significance testing is based on maximum-likelihood parameter estimators of a
probabilistic model. Such a model-based approach allows significance testing of multiple
models under a variety of meta-parameter settings and on a concatenation of different
test sets, and thus enables the drawing of conclusions beyond a single sample of test
data and meta-parameter settings. Chapter 4 introduces the main concepts of statistical
significance testing on the example of parametric and sampling-based tests, and discusses
and exemplifies the workings of the GLRT on a running example from NLP.

Appendix A presents the mathematical background of the models on which our metrics
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for measuring validity and reliability are based: GAMs and LMEMs. In order to keep
our book self-contained, we introduce the general form of the respective models, present
worked-through toy examples that illustrates the concept, and briefly discuss optimization
methods to estimate the parameters of the respective models from data.

Throughout the book, we tried to keep the mathematical level accessible to readers
from different backgrounds, without sacrificing mathematical rigor. Well known but
important theorems are stated explicitly, however, for proofs the reader is referred to the
relevant literature. Proof sketches of propositions that build the theoretical basis of the
statistical tests proposed in this book are given explicitly.

Furthermore, we provide R code to replicate selected applications of GAMs, LMEMs,
and GLRTs that have been presented in the chapters of this book. Code and data are
freely available at https://www.cl.uni-heidelberg.de/statnlpgroup/empirical_m

ethods/

1.3. Intended Readership

This book is designed for researchers and practitioners whose day-to-day responsibility is
experimental work in the area of artificial intelligence, especially applied to NLP and
data science problems. Although the book is designed to be self-contained, the section
on mathematical background and the rest of the book expect the reader to have some
elementary knowledge of statistics and machine learning. Moreover, we expect that
the readers bring along some curiosity about problems beyond the boundaries of the
train-dev-test paradigm, and are interested in looking beyond the end of their noses, into
fields like philosophy of science, psychometrics, or statistics.

While the emphasis of this book is on model-based empirical methods, we would
like to note that the book also covers traditional approaches from exploratory data
analysis to detect validity problems, or standard descriptive statistics on agreement to
measure reliability. The goal of the description of traditional techniques is to analyze
and understand their shortcomings. However, the respective chapters can also serve
as concise and critical introduction into traditional approaches for measuring validity,
reliability, and significance.

Last, the focus on applications in NLP and data science expressed in the title of the
book should not deter researchers in related fields of artificial intelligence to have a
look at the methods proposed in our book. Our running examples are from the area
of medical data mining in addition to examples from the area of NLP. Moreover, the
fact that similar models are applicable to ranking problems in NLP and information
retrieval, or to classification problems for texts and images, or to time series prediction in
language modeling and medical diagnostics, invites the application of the same methods
for measuring validity, reliability, and significance in various fields of artificial intelligence.
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2. Validity

The notion of validity of a prediction has an ill-defined status in NLP, and it is not
associated with a widely accepted evaluation measure such as precision as a measure of
prediction quality, or recall as a measure of prediction quantity, in classification. The
goal of this chapter is to give a clear definition of the concept of validity in NLP and data
science, which then can be operationalized into methods that allow measuring validity,
and applied to general NLP and data science tasks.

2.1. Validity Problems in NLP and Data Science

First we will present observations on validity issues in NLP and data science that can
be found in the literature. These observations have been discussed under the names of
dataset bias, information leakage, or circularity, without explicitly referencing to the
concept of (in)validity. However, each of the discussed problem areas can be seen as one
aspect of a more general problem that we will call the problem of validity.

2.1.1. Bias Features

A phenomenon frequently discussed in the context of interpretability or trustworthiness
of machine learning models is that of superficial patterns in the data which be identified
as features that are spuriously, but highly, correlated with target labels. This dataset
bias can be due to an annotation bias of crowd workers that adopt certain heuristics to
create annotations quickly and efficiently. It may also be triggered by very prominent
annotation examples, or by too strict annotation guidelines, that enforce particular
annotation heuristics. For example, crowd workers construct contradictions in natural
language inference by including negation words in the hypothesis, which allows inferring
the contradiction class label without looking at the premise [Gururangan et al., 2018,
Poliak et al., 2018]. Similar occurrences of bias features in NLP data have been observed
in the form of word-overlap bias for reading comprehension [Jia and Liang, 2017] and
natural language inference [McCoy et al., 2019], lexical cues in argument mining [Niven
and Kao, 2019], or question types in visual question answering [Agrawal et al., 2018].

The problem of a dataset bias is the fact that minimizing training error leads machine
learning models to inherit this bias from the data. The solutions proposed to solve the
annotation bias problem include strategies to adversarially manipulate documents in
order to distribute bias features across all classes. For example, including distractor
sentences using the same words in question and answer avoids an advantage for a simple
word overlap bias in question-answering [Jia and Liang, 2017]. Including sentence pairs
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that use the same words in hypothesis and premise breaks a word overlap bias in natural
language inference [McCoy et al., 2019]. Furthermore, resplitting data can break up
the correlation between question-type and answer in visual question answering [Agrawal
et al., 2018]. Based on such challenge datasets, several machine learning approaches have
been proposed to learn robust models that minimize the influence of the bias features
[Clark et al., 2019, Kim et al., 2019, Schlegel et al., 2020].

In order to establish a general measure of validity of NLP predictions, we note the
nature of the measures that are used to detect superficial cues in the above cited
applications. They can be described as normalized co-occurrence statistics of candidate
features (e.g., words) and labels (e.g., the class labels of entailment, neutral, and
contradiction in natural language inference applications). For example, Poliak et al. [2018]
use conditional probability, defined by normalizing the feature-label co-occurrence by the
feature occurrence, as measure. Pointwise mutual information as used by Gururangan
et al. [2018] normalizes feature-label co-occurrence by feature occurrence times label
occurrence. However, these measures will not allow a clear-cut separation of spurious and
essential features, i.e., features that are deemed invalid by researchers, and those that
are considered ”essential to the overall task, so they cannot simply be ignored” [Clark
et al., 2019]. Secondly, we note that in order to deserve the name, a training set bias
needs to be computed contrastively on an out-of-domain test set. However, annotation
of a challenge test set that is designed to break models based on superficial patterns is
sophisticated and costly, and not a standard part of most machine learning datasets.

2.1.2. Illegitimate Features

A related and even more severe validity problem has been identified in the area of data
mining, called data leakage, leading to illegitimate features [Kaufmann et al., 2011].
These are features whose distribution with the target label is heavily skewed so that one
illegitimate feature alone is sufficient to predict the correct label. Rosset et al. [2009] give
two examples from medical data mining where illegitimate features led to winning systems
in benchmark competitions. In one case, patient IDs carried predictive information about
the target label of breast cancer. This information was introduced inadvertently by
compiling data from different medical institutions, where positive labels were collected
exclusively from particular clinical institutions, and negative labels exclusively from
others. In another case, diagnosis fields were removed from data, leaving a trace that
could be linked directly to target labels.

As solution to this problem, techniques of exploratory data analysis have been sug-
gested, including computing the ”difference between estimated and realized out-of-sample
performance” [Kaufmann et al., 2011], leading again to the problem of lacking suitable
out-of-sample data in most machine learning datasets.

Whereas bias features are legitimate and can and should be part of NLP models,
illegitimate features are clear breaches of validity and should be treated differently. This
calls first for a clear definition of criteria for validity, and second for automatic methods
that allow a clear-cut identification of illegitimate features that should not be used in
machine learning.
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2.1.3. Circular Features

Another severe breach of validity in current machine learning research can happen in
scenarios where gold standard labels for training and evaluation are created by automatic
procedures, without involvement of human annotators. An example is cross-lingual
information retrieval for patent prior art search. In this application, relevance ranks are
determined from different types of patent citations [Graf and Azzopardi, 2008, Piroi and
Tait, 2010]. Patents in the same patent family receive the highest relevance rank, next
highest are patents cited in search reports of patent examiners, and the lowest relevance
level is assigned to patents cited by patent applicants [Guo and Gomes, 2009, Kuwa et al.,
2020, Schamoni and Riezler, 2015]. In such scenarios, the problem of circular features
arises if the criteria that are used to define the gold standard labels are incorporated as
features in the machine learning model. This happened in the CLEF-IP 2010 benchmark
competition [Piroi and Tait, 2010] where applicant citations extracted from the query
document were added to the list of retrieval results in the approach of Magdy and Jones
[2010]. Because of overlapping citations in the examiner citations and applicant citations,
this procedure has been criticized as raising a concern about the validity of the evaluation
of the task [Mahdabi and Crestani, 2014].

A similar problem is virulent in machine learning for medical data mining, where
clinical measurements are standardly used to define diseases. For example, the systemic
inflammatory response syndrome (SIRS) is defined by measuring whether at least two
out of four criteria defined in the Surviving Sepsis Campaign Guideline (SSCG)1 are
met. As criticized by Schamoni et al. [2019], these measurements of SIRS criteria are
incorporated directly as features in the scoring function, and at the same time used to
define a ground truth label, in the approaches of Henry et al. [2015] and Dyagilev and
Saria [2016]. In a similar way, Nemati et al. [2018] incorporate all measurements required
to identify a change in Sequential Organ Failure Assessment (SOFA) score2 as features
in their prediction function, and simultaneously use them to define a ground truth label
of sepsis according to the SOFA-based Sepsis-3 definition [Seymour et al., 2016, Singer
et al., 2016]. The same problem of including all defining clinical measurements of the
SOFA score as features for machine learning models happened in the data preparation
process for the 2019 PhysioNet Challenge on Early Prediction of Sepsis From Clinical
Data [Reyna et al., 2019].

The problem of circularity is poorly researched in NLP and data science. A probable
reason for this is the focus of the train-dev-test paradigm on operationalizing generalization
on unseen data by data splits, either in form of fixed standard splits, random splits
[Gorman and Bedrick, 2019], or biased splits [Søgaard et al., 2021]. However, no data
splitting technique is able to reveal a circularity problem if the same deterministic function
defines the feature-label relation for the whole dataset. Thus, the desideratum regarding

1The defining criteria concern heart rate (> 90 BPM), temperature (> 38◦ or < 36◦C), respiratory
rate (> 20 BPM), or white blood cell count (> 12 or < 4 thousands per microliter), measured in the
last 2− 8 hours [Dellinger et al., 2013].

2The measurements are taken for creatinine level and urine output, Glasgow Coma Scale, bilirubin
level, respiratory level, thrombocytes level [Vincent et al., 1996].
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circular features is an automatic method for a clear-cut identification of circularity given
a single dataset. Circular features also raise ethical concerns if machine learning happens
in vital areas such as medical informatics. For example, in machine learning for prediction
of sepsis, a disease which causes about 20% of all global deaths [Rudd et al., 2020], it
is crucial to develop methods that allow an early identification of circularity problems,
before circular machine learning models are applied in real-world scenarios.

2.2. Theories of Measurement and Validity

In this section, we will discuss various theoretical considerations on the problem of the
validity of a measurement in different empirical sciences. Each approach elaborates
certain formal requirements on measurements. Our interest will be to adapt and transfer
these formal criteria on the validity of a measurement to a definition of concrete validity
checks for machine learning models.

2.2.1. The Concept of Validity in Psychometrics

Psychometrics is a field of study concerned with techniques of psychological measurement,
i.e., of psychological tests. Classical test theory in psychology [Lord and Novick, 1968]
conceptualizes the validity of a psychological test as ”criterion validity”. It is computed
as the correlation of the true test score with an external criterion, where the true score is
defined as the expectation of the observed test score.

This view has been revised since Cronbach and Meehl’s [1955] introduction of the
concept of ”construct validity”. They argue that tests in psychology are mostly concerned
with measuring attributes like intelligence which are not operationally defined criteria
— the same is true for attributes like entailment and contradiction in natural language
inference, or relevance in information retrieval. Furthermore, they clarify that the status
of correlation studies is evidence indicative, but not constitutive, of validity. For example,
the fact that height and weight correlate highly in the general population does not qualify
weighing a person as a valid measurement of their height. Instead, they introduce the
notion of a construct that is defined in an independent theory (called nomological network
in Cronbach and Meehl [1955]), and define construct validation as a check if statements
in the network lead to predicted relations among observables.

A realist interpretation of Cronbach and Meehl’s [1955] account on construct validity
is given by Borsboom [2005], Borsboom and Mellenbergh [2007], Borsboom et al. [2004].
They state:

A test is valid for measuring an attribute if and only if (a) the attribute
exists and (b) variations in the attribute causally produce variations in
the outcomes of the measurement procedure.

A measurement model thus explains how the structure of a theoretical attribute relates
to the structure of observations. An example from physics would be a measurement model
for temperature that stipulates how the level of mercury in a thermometer systematically
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Figure 2.1.: Balance scale test for stages of cognitive development. Graphics from Bors-
boom and Mellenbergh [2007].

relates to temperature. An example from psychology is the test developed by Inhelder
and Piaget [1958] to measure stages of cognitive development in children. The test uses
a balance scale and asks children to which side the scale will tip. Test situations using
different weights on either side and different distances to the pivot point result in different
response patterns depending on the developmental stage of the child. Some examples
are given in Figure 2.1. In stage I (ages 3− 5), children simply choose the side that has
most weights. In stage III (ages 10− 12), children take distance into account, but only if
the weights are equal. In that stage, they start guessing when the weight and distance
cues conflict. The relationship between weight and distance is learned only later in early
adolescence.

If we relate this example to Borsboom’s [2004] above statement about validity, we can
say that Inhelder and Piaget’s [1958] test for developmental stages of children is valid if
different values of the attribute (e.g., children of ages 3− 5 vs. 10− 12) lead to different
test outcomes (corresponding to different cognitive rules concerning weight and distance),
and observed outcomes of a valid test can be used to infer the position of children in one
of four discrete stages of cognitive development.

For a deeper discussion of more recent issues in test validity theory we refer the reader
to Markus and Borsboom [2013].

2.2.2. The Theory of Scales of Measurement

Another approach to measurement theory that also originated in psychometrics is Stevens’
[1946] well-known theory of scales of measurement. The notion of a scale is defined
as a mathematical representation of empirically observable relations between objects.
The task of a researcher is to establish these relations empirically, prove that they can
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be represented in a formal structure, and find a mapping that is homomorphic to the
empirically established relations. The theoretical strategy is to prove the existence and
uniqueness of such a homomorphism, and show under which transformations of the scale
values this homomorphism is preserved.

Following Stevens [1946], the mathematical group structure of four important scales is
defined by the following cumulative operations and scale-specific transformations.

• The nominal scale admits the empirical operation of identification
of equality, and it is transformation-invariant under one-to-one
substitutions. For example, a numbering of football players allows
identifying each individual even after permutation of the numbers.

• The ordinal scale admits the basic empirical operation of rank
ordering, and it is transformation-invariant under monotonic
maps. For example, the rank-order of the hardness of minerals is
preserved under any monotonically increasing function applied to
the hardness values.

• The interval scale admits the empirical operation of determination
of equality of intervals or differences, but not ratios, between items.
It is transformation-invariant under affine linear maps. Examples
are the temperature scales of Celsius and Fahrenheit which can
be transformed into each other by a affine linear function, where
the bias term serves to determine arbitrary zero points.

• The ratio scale allows to determine ratios between items, and
it is transformation-invariant under non-affine linear maps. For
example, length can be transformed between imperial and metric
scale systems by multiplication of each value with a constant.

For our purpose of formalizing a notion of validity, we can tie the criterion of a valid
measurement to the effect of transformations of scale values on the predictive power of
the representation structure.

Stevens’ [1946] theory of measurement has been further developed into the so-called
”representational” [Krantz et al., 1971], ”axiomatic” [Michell, 2004] or ”abstract” [Narens,
1985] measurement theory. For our discussion, the notion of transformation-invariance
is crucial, and we refer the reader to the cited textbooks for deeper discussion of more
refined representational structures and scales of measurement.

2.2.3. Theories of Measurement in Philosophy of Science

According to the view presented in the section above, every measurement yields numerical
representations of empirical structures. This type of measurement is called ”fundamental”
measurement in philosophy of science [Balzer, 1992], and it almost always is found as part
of a more complex approach to measurement, called ”model-guided” measurement [Balzer
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and Brendel, 2019]. According to this view, measurement consists in determining a specific
function value (called the function value to be measured) from other, given function
values (the arguments needed for the calculation), according to a mathematical model.
If we think of the mathematical model as a mathematical equation, the determination of
a function value to be measured amounts to calculating it from given values by ”solving
the equation” given by the mathematical model, i.e., by evaluating the corresponding
mathematical function for the proper given values.

Let us consider a simple example. Assume that we want to measure the mass of rigid
spherical particles by the following setup. We choose one particle p0 as our reference
particle and determine the mass of all the other particles via a unidimensional central
collision with p0. Given that we have velocity readings from both particles before and
after the collision, we can determine the mass of the unknown particle (relative to the
mass of p0) by applying the law of conservation of momentum that governs the described
physical system. Written more formally, using Balzer and Brendel’s [2019] notation, the
corresponding measurement model of this procedure is 〈P, T,R+, v,m〉, where

• p, p0 ∈ P ,

• T = {t1, t2} is a set of two points in time, t1 before the collision, and t2 after the
collision,

• v : P × T → R+ is the velocity function,

• m : P → R+ is the mass function.

• The axioms of the model are

– definition of a unit : m(p0) := 1,

– p doesn’t move before collision: v(p, t1) = 0,

– law of conservation of momentum:
v(p, t1)m(p) + v(p0, t1)m(p0) = v(p, t2)m(p) + v(p0, t2)m(p0).

The last equation can be solved for m(p), using the axioms of the model, yielding

m(p) =
v(p0, t1)− v(p0, t2)

v(p, t2)
. (2.1)

The function in Equation (2.1) allows us uniquely determine the mass of a particle
(relative to the mass of p0). Furthermore, as we can see, m(p) depends only on v, which
itself is another measurement for which can formulate a measurement model. Such a
setting is called a measurement chain. In order to have a proper measurement of the
mass of a particle, we thus must also be able to measure v without the need to know m,
and we must be able to (practically) determine the necessary quantities for all particles
in P . These conditions of unique determination and disjointness of functions are simple
cases of two more general conditions on measurement models that can be stated with
Balzer and Brendel [2019] as follows.3

3Balzer [1992], Balzer and Brendel [2019] utilize a formalism that allows them to express all relevant
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1. The function to be measured needs to be uniquely determined by
the given function(s) and law(s) of the model.

2. The function to be measured and the function that is given need
to be disjoint.

The conditions stated above, especially the latter condition of disjointness, can serve
as further requirements in our quest of formalizing a notion of validity of predictions.4

2.3. Prediction as Measurement

In the theoretical approaches discussed above, validity was described as a property of a
measurement. All discussed approaches fundamentally model a measurement process as
the determination of a function value for a homomorphic mapping of empirical structures
into a numerical system. In the following, we will consider predictions in NLP and data
science as instances of measurements. Firstly, we will consider prediction in the form of
data annotation, i.e., the assignment of a label y to a complex input x ∈ Rp, by either a
human annotator or a program following a deterministic rule system. Secondly, we will
look at predictions of machine learning models, i.e., inference in machine learning where
a label ŷ is predicted for a complex input x by a machine learning model. Clearly, both
types of predictions can be cast in a functional form: In case of data annotation, the
function p is considered deterministic and the prediction is denoted by y = p(x). In the
case of prediction by a parametric machine learning model, we specify a parameter vector
θ that refers to the parameters of a trained machine learning model pθ and the prediction
is denoted by ŷ. In the case of regression, the prediction denotes the score that is assigned
to an input such that ŷ = pθ(x). In the case of multi-class classification or structured
prediction, we use the maximum a-posteriori prediction where ŷ = argmaxy pθ(y|x). In
both cases of prediction by data annotation or machine learning models, we obtain
a functional measurement where y (or ŷ) is the value of the function p (or pθ) to be
measured for a given input x.

2.3.1. Feature Representations

Our notion of features x refers to raw input features, i.e., feature representations that
exist external to and independent of machine learning models which take them as input
data. Clearly, raw features can be complex measurements themselves, or in the words
of Gitelman [2013]: ”raw data” is an oxymoron. For example, in medical data science,

concepts (even functions) in terms of tuples and sets. Essentially, the condition of disjointness of the
function to be measured and the function given by the model means that the input measurements
must be determinable without knowing the quantity that one wants to measure.

4Further and even stricter conditions on validity of measurement are possible and have been discussed
in philosophy of science. For example, see Sneed [1971] and Stegmüller [1979, 1986] for a discussion
of theoretical terms and possible circularity problems for fundamental measurement procedures. For
a deeper discussion of statistical measurement procedures, see Balzer and Brendel [2019].
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features consist of complex and derived measurements of vital signals (respiratory rate,
heart rate, blood pressure, etc.), laboratory test results (blood urea nitrogen, hematocrit,
creatinine, etc.), and clinical information (clinical history, ICD-9 codes, etc.) [Schamoni
et al., 2019]. Even in NLP, raw representations of text data are the result of an explicit
generation procedure that is standard for the specific scientific discipline. For example,
in cross-lingual patent retrieval, standard feature representations include identities of
characters or words in the textual part of a patent file, but also meta-information like
patent number, patent family identifier, or the patent numbers of cited prior-art patents.
What makes meta-information features such as citations in patent retrieval [Magdy
and Jones, 2010] or patient IDs in medical data science [Rosset et al., 2009] especially
interesting is the fact that they can be (mis)used in unintended ways and thus play a
central role in validity testing.5

Our choice of feature representations is motivated by the fact that every theoretical
approach to validity discussed above assumes an a-priori reference point relative to which
validity of a measurement is determined. Such a reference point is called ”attribute”
[Borsboom et al., 2004], ”empirical structure” [Stevens, 1946], or ”given function” [Balzer,
1992], in the respective approaches, however, they all are interpretable6 feature repre-
sentations. This connects our work to related work on explanatory machine learning
that has to recur to interpretable feature representations once it comes to the actual
explanation of the workings of deep learning models. For example, Ribeiro et al. [2016]
conceptualizes interpretable feature representations for text applications as binary vectors
indicating the presence or absence of words or characters in a lexicon or alphabet. If
techniques like layer-wise relevance propagation (LRP) are applied to text data [Ding
et al., 2017], activation patterns in neural networks are eventually mapped to discrete
words. Furthermore, no matter how text data are represented internally in neural
networks — by continuous-valued vector representations that are pre-trained, e.g., by
recurrent neural networks [Mikolov et al., 2013], convolutional neural nets [Kim, 2014], or
bi-directional transformers [Devlin et al., 2019], or learned as weights of a dedicated layer
during training of a task-specific loss function [Collobert et al., 2011] — there always
exists a raw input data representation that is external to the neural network model and
can be reconstructed from the internal embedding representation.7

2.3.2. Measurement Data

Before we define the validity of a data annotation or machine learning prediction, a
further simplification will be helpful. Let us start with the case of human data annotation:

5A well-known example from the area of image processing is the (mis)use of copyright tags in image
processing [Lapuschkin et al., 2019].

6A precise definition of the notion of interpretability is an open research problem that is outside the
scope of this book. It involves issues ranging from the (non)concurvity of features [Amodio et al.,
2014, Tomaschek et al., 2018] to human factors of intelligibility [Alvarez-Melis and Jaakkola, 2018,
Doshi-Velez and Kim, 2017, Miller, 2017].

7In a similar way, factorized latent representations [Chen et al., 2016, Higgins et al., 2017, Locatello
et al., 2019] have to be mapped to interpretable concepts when used as explanatory factors in image
processing.
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We note that in order to assess the validity of a prediction in form of a data annotation,
we are interested in the resulting assignment of a label y to an input x, and we consider
the actual system that performed the annotation, i.e., the human annotator or the rule
system, as fixed and deterministic, thus we can disregard it. For cases of data annotation,
the question of the validity of a prediction can therefore be reduced to the question
of validity of the functional relation of a feature xk to a label y, where xk denotes
a component of a p-dimensional feature vector x = (x1, x2, . . . , xp), and we obtain a
dataset D = {(xn, yn)}Nn=1 of feature-label relations whose validity can be analyzed by
the descriptive and model-based techniques presented in the following sections.

Examples for predictions in these sections will be taken from the NLP area of cross-
language information retrieval, and from the data science field of medical informatics.
For text-based applications such as cross-language information retrieval, x can be seen
as vectors of words or characters, and y can be seen as ordinal numbers indicating a
relevance level. For a medical diagnosis, x consists of clinical measurements such as heart
rate, body temperature, or bilirubin level. Labels y can again be thought of as ordinal
numbers denoting severity levels. All prediction models discussed in this chapter are
neural networks trained with regression loss.

Similar to the case of data annotation, in order to define the validity of a machine
learning prediction on the basis of features and labels, we are not interested in the actual
machine learning model pθ that performed the prediction, but only in the resulting
prediction of a label ŷ for an input x. Our idea of transferring the knowledge of a neural
network into a dataset of inputs and predicted labels is inspired by knowledge distillation
[Hinton et al., 2015, Kim and Rush, 2016, Tan et al., 2018]. The original goal of knowledge
distillation is to map a complex neural network to a simpler model by treating the complex
model as teacher for the simpler student model. Similar to data annotation, we would
like to disregard the peculiarities of the prediction system, i.e., the teacher model qθT , and
reduce the question of validity of machine learning predictions to the question of validity
of the functional relation of input features xk in x = (x1, x2, . . . , xp) to teacher predictions
ŷ. In case of regression, we obtain the prediction ŷ for an input x as the real-valued score
qθT (x). In case of logistic regression, the teacher model score qθT (y|x) can be thresholded
to predict positive or negative classes. In case of multi-class classification or structured
prediction, the maximum a-posteriori prediction ŷ = argmaxy qθT (y|x) can be used. In
any case, we obtain a dataset D = {(xn, yn)}Nn=1 where yn = ŷn for i = 1, . . . , n, that can
be used to train a student model.

This representation allows us to assess the problem of validity of a prediction by model
inference without knowledge of the data on which the machine learning model in question
was trained. All we need to know is the predictions of the model, together with an
intelligible set of input features. A further advantage of this representation is that it
allows us to treat prediction by data annotation and by model inferences from the same
formal perspective, namely as validity of the functional relation of input features to labels
in a dataset.
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2.4. Descriptive and Model-Based Validity Tests

Inspired by the theoretical accounts on measurement and validity presented in Section
2.2, and with a focus on the types of invalid features discussed in Section 2.1, we propose
the following necessary conditions for validity of a prediction in NLP and data science.
If a prediction is valid, then none of the invalidity criteria stated below must apply.

Definition 2.1 (Validity).
The functional relationship between a feature and a label in a prediction
by data annotation by or machine learning inference is invalid if at
least one of the following conditions holds:

1. the correlation between the feature and labels varies substantially
across datasets from different domains (dataset bias),

2. the predictive power of the feature is dependent on a transforma-
tion of its scale representation (scale transformation),

3. the feature allows an exact reconstruction of a deterministic target
functional definition while nullifying the contribution of all other
features (circularity).

In the following, we will support each condition by an operational definition that is
based on a statistical test for the respective criterion.

2.4.1. Dataset Bias Test

Dataset bias can be described as the problem of when a model learns superficial patterns
in the data to perform well on training data, but does not generalize well and performs
poorly on out-of-domain test data [Clark et al., 2019]. In order to identify such superficial
patterns, here called bias features, a contrast of a measure between in-domain and
out-of-domain data is required. Here we identify bias features as those features in a set
of given candidates that are correlated with the class label on the training set from one
domain, but are uncorrelated or anti-correlated with the label on a test set from another
domain.

Testing for invariance of correlations between features and target labels across datasets
from different domains can be motivated by an invariance criterion that is entailed by
the central principle of independent mechanisms in causal inference [Pearl, 2009, Peters
et al., 2017, Schölkopf et al., 2021]. Techniques like Invariant Causal Prediction [Peters
et al., 2016] or Invariant Risk Minimization [Arjovsky et al., 2019] promote learning
correlations that are invariant across distinct, separate training environments so that the
will also hold in novel testing environments. It is suggested that such invariant features
relate to the causal explanations themselves,8 so they allow us to connect the concept

8Clearly, invariance of correlations across different environments is only part of causality, and further
conditions are necessary [Rosenfeld et al., 2021]. Thus we do not make any causality claims on our
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Table 2.1.: Feature templates for natural language inference.

Template Meaning Range

(1) hyp-is-subseq hyp is sub-sequence of pre {0, 1}
(2) all-in-pre all words in hyp are in pre {0, 1}
(3) percent-in-pre percent of words of hyp in pre [0, 1]
(4) scaled-len-diff rescaled log-length difference [0, 1]
(5) cos-sim rescaled cosine similarity [0, 1]
(6) pre-has-neg negation in pre {0, 1}
(7) hyp-has-neg negation in hyp {0, 1}

of invariance of correlations across domains with the concept of validity presented by
Borsboom et al. [2004]: Recall their notion from Section 2.2.1 stating that a test is valid
for measuring an attribute if and only if (a) the attribute exists and (b) variations in
the attribute causally produce variations in the outcomes of the measurement procedure.
Using the concept of domain invariant feature representations, our dataset bias test can
be seen as a check whether the functional relation of features (our ”attributes”) and
labels (our ”measurement outcomes”) is invalid, by testing whether the correlation of
feature values to label values varies across domains (our replacement for the notion of
”(non)causality”).

Let us formalize a dataset bias test using the standard notion of the Pearson sample
correlation coefficient (see Larsen and Marx [2012]).

Definition 2.2 (Dataset Bias Test).
Given a dataset of feature-label relations D = {(xn, yn)}Nn=1, the
sample correlation coefficient R(xk, y,D) for a feature xk in x =
(x1, x2, . . . , xp) and a label y in dataset D is computed as

R(xk, y,D) =
E(xky)− E(xk)E(y)√

V(xk)
√
V(y)

,

where E(xk) = 1
n

∑N
n=1 x

n
k , E(y) = 1

N

∑n
i=1 y

n, E(xky) = 1
N

∑N
n=1 x

n
ky

n,

V(xk) = 1
N

∑N
n=1(xnk − E(xk))

2, and V(y) = 1
N

∑N
n=1(yn − E(y))2.

A feature xk exhibits a dataset bias for an in-domain dataset DID

if R(xk, y,DID) substantially differs from R(xk, y,DOOD) for an out-of-
domain dataset DOOD.

The test described in Definition 2.2 computes a linear correlation between two random

validity tests, but instead we take a practical approach where computing the descriptive statistics of
the correlation coefficient for given features and labels across given domains replaces the notion of
causality in Borsboom and Mellenbergh’s approach to construct validity.
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variables, representing feature and label, and assesses a dataset bias if the difference in
correlation between to datasets exceeds a certain threshold which is to be set by the user.

Let us consider the NLP task of natural language inference as an example. This task is
defined as follows: For a pair of natural language sentences (premise and hypothesis), a
prediction has to be made whether the hypothesis is true given the premise (entailment),
false (contradiction), or unrelated (neutral). McCoy et al. [2019] give an example for a
bias feature based on lexical overlap that predicts entailment for any hypothesis whose
words all appear in the premise:

(1) Premise: The judge was paid by the actor.
Hypothesis: The actor paid the judge.

(2) Premise: The actor was paid by the judge.
Hypothesis: The actor paid the judge.

While this bias feature predicts entailment correctly for example (1), it fails on example
(2). Bias features like lexical overlap for natural language inference tasks have been
described in several publications (see Schlegel et al. [2020] for an overview). In the
following, we will apply the dataset bias test described above to a set of seven feature
templates on premise (pre) and hypothesis (hyp), shown in Table 2.1.9

As the in-domain training set, we use the multi-genre natural language inference (MNLI)
dataset [Williams et al., 2018], consisting of 392,287 sentence pairs10 with entailment
information. As the in-domain test set, we use 9,630 sentence pairs that were filtered
from the matched test examples provided in the MNLI dataset. As the out-of-domain test
sets, we use the challenge dataset called HANS [McCoy et al., 2019] and the Adversarial
NLI (ANLI) dataset [Nie et al., 2020]. The HANS dataset consists of 30,000 sentence
pairs that were created purposely such that models will fail on a particular subset of
the data, if certain superficial heuristics are used. The heuristics used correspond to
our templates hyp-is-subseq, all-in-pre, percent-in-pre, and a third constituent
overlap heuristics based on parsing that is not used in our experiment. For each heuristic,
half of the examples can be correctly classified using the heuristic and half of them can
not. The second out-of-domain test set consists of 1,200 examples that were created
by human annotators as part of the ANLI data set. The annotators were instructed to
provide a hypothesis that fools the model into misclassifying the label. This annotation
process was repeated by retraining the model on the hard examples, and the overall
adversarial human-in-the-loop procedure was iterated for three rounds.

For comparability, we mapped all datasets to binary classification, with entailment as
positive class, and neutral and contradiction comprising the negative class. Figure 2.2
shows the Pearson sample correlation coefficient computed for the seven feature templates
on the MNLI dataset. We see that the three overlap features are positively correlated

9Rescaling was performed by the min-max formula f(x) = x−min
max−min . Negations were computed by a

regular expression extracting negation words, following https://www.nltk.org/_modules/nltk/s

entiment/util.html.
10415 sentence pairs were filtered out because of duplications or missing labels.
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Figure 2.2.: Sample correlation between features and gold labels on MNLI training set.

Figure 2.3.: Sample correlation between features and gold labels on HANS and ANLI
data.

with the positive label entailment, while a negation in the hypothesis is correlated with
the negative class.

Figure 2.3 shows the sample correlation coefficient computed on the HANS and ANLI
datasets. The templates for lexical overlap are constants by construction in the HANS
dataset, yielding zero covariance with the label, which justifies the attribution of zero
correlation in these cases. The other templates are non-constant and show a small
correlation to the labels. A different pattern is visible for the ANLI data, with overlap
and negation templates having an opposite effect than in the MNLI data, due to their
adversarial construction. According to our definition above, a case of dataset bias can
be assessed for all templates (except scaled-len-diff) if ”substantial difference” in
correlation is defined as the difference between no correlation, positive correlation, and
negative correlation.
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Figure 2.4.: Sample correlation between features and model predicted labels on MNLI
data.

Figure 2.5.: Sample correlation between features and model predicted labels on HANS
and ANLI data.

Next, we consider a case where we train a BERT deep neural network [Devlin et al.,
2019] on the MNLI training set, and evaluate its predictions on test data from a different
domain. The sample correlation coefficient shown in Figure 2.4 is computed on the
relation of features to predicted labels on MNLI data. Comparing Figure 2.4 to Figure
2.2 shows that a very similar pattern can be found for correlations between features
and gold-standard labels and and correlations between features and predicted labels.
Figure 2.5 shows that the dataset bias that the model has picked up on the MNLI data is
transferred to the HANS data, and even more prominently, to the ANLI data. However,
the accuracy results in Table 2.2 show that the dataset bias negatively affects model
accuracy by around 50% when evaluating the MNLI-biased model on out-of-domain data
like HANS or ANLI.
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Table 2.2.: Accuracy for natural language inference of MNLI-trained BERT model.

MNLI train MNLI test HANS test ANLI test

accuracy 0.98 0.91 0.54 0.58

Discussion. The dataset bias test described above is a descriptive statistic that computes
and compares the sample correlation coefficients of variables that are assumed to be
linearly or monotonically correlated. Since the test measures a bias towards idiosyncrasies
of a particular in-domain dataset, a necessary prerequisite for the test is the existence
of a designated out-of-domain dataset for a comparative evaluation of feature-label
correlations. However, sophisticated and costly annotation of adversarial datasets is not
part of the standard package of machine learning datasets.

Furthermore, dataset bias is a never-ending problem that can only be solved by never-
ending learning [Mitchell et al., 2015]. For example, a dataset bias might exist at certain
moment for a given pair of datasets, and the bias in question may be resolved by data
improvement and joint training procedures such as those proposed by Clark et al. [2019],
Kim et al. [2019], McCoy et al. [2019], Nie et al. [2020], yet a new bias can be detected
anytime against any new unseen out-of-domain dataset. In other words, an extensional
definition of the notion of domain on which the dataset bias test is based is a moving
target. The same is true of the notion of environment [Arjovsky et al., 2019, Peters et al.,
2016] on which the motivating concept of invariant causal prediction is based. Since there
are no clear criteria for differentiating domains or environments, theoretical justifications
or causal interpretations of the dataset bias test have to be made very cautiously.

Lastly, what makes this test unattractive as a validity metric is the fact that there
is not clear-cut threshold for correlation coefficients to assess invalidity, and no single
correlation measure that would be applicable to all cases of suspected dataset bias.11

2.4.2. Transformation Invariance Test

The transformation invariance test directly incorporates the ideas of Stevens’ [1946]
theory of scales of measurement described in Section 2.2.2 into a statistical test. In
practice, we apply the idea of permissible scale transformations to feature representations
in a given dataset, and check if the predictions of a machine learning model that is trained
on these data are not affected by applying permissible transformations to any feature in
the data. That is, any evaluation metric applied the predictions of two models trained on
the same data should yield the same result, with or without applying admissible feature
transformations.

11For example, correlation in multi-class classification problems requires measures such as mutual
information [Cover and Thomas, 1991], and even our natural language inference example used
a special subcase of Pearson correlation called point-biserial correlation between continuous and
dichotomous variables [Agresti, 2002].
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Figure 2.6.: Distribution of malignant (black dots) and benign (gray dots) cases of cancer
labels against patient IDs (in log-scale on x-axis), with predictions scores of
an SVM model trained on the data (on y-axis). Graphics from Rosset et al.
[2009].

Formally, the mathematical groups defining scale representations are subgroups of
each other, with the ratio group being a subgroup of the interval group, which itself is
a subgroup of the ordinal group, which is a subgroup of the nominal group. Thus the
nominal group permits the most transformations, while the ratio group permits the least.
A statistical test based on permissible transformations can then be stated as follows.

Definition 2.3 (Transformation Invariance Test).
The structure of the representation of an input feature xk in x =
(x1, x2, . . . , xp) needs to be transformation invariant under an operation
T (xk), where

• the nominal scale representation permits one-to-one substi-
tutions T (xk),

• the ordinal scale representation permits mappings by strictly
monotonic increasing functions T (xk),

• the interval scale representation permits mappings by affine
linear functions T (xk) = axk + b, for a ∈ R+ \ {0}, b ∈ R,

• the ratio scale representation permits mappings by non-affine
linear functions T (xk) = axk, for a ∈ R+ \ {0}.

Given a training set D = {(xn, yn)}Nn=1 of features and gold standard
labels, transformation invariance is violated if applying permissi-
ble transformations to any feature xk in xn = (x1, x2, . . . , xp), ∀n =
1, . . . , N changes the predictions of a machine learning model trained
on D.

An example for a violation of transformation invariance, leading to invalidity, can
be seen in the use of patient IDs as feature, which has been described as ”illegitimate”
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by Kaufmann et al. [2011]. The reason for this illegitimate use of features is described
as a case of ”information leakage” that happened at the KDD Cup 2008 data science
competition in Rosset et al. [2009]. The exploratory analysis of the data presented by
Rosset et al. [2009] is illustrated in Figure 2.6. It shows the distribution of labels, with
black dots indicating malignant candidates and gray dots indicating benign cases of
cancer, against patient IDs (in log scale on x-axis). This distribution allows a binning
into five ranges of consecutive IDs where the vast majority of malignant cases is in the
first bin (IDs 0 to 20,000) and fourth bin (IDs 4,000,000− 4,870,000). Rosset et al. [2009]
report that the binning and its correlation with the labels generalized from training to
test data. Furthermore, the score distribution (shown on the y-axis) of a linear SVM
trained on 117 features demonstrates that the model is able to learn a relatively clear
decision boundary between positive and negative labels from these data. Rosset et al.
[2009] hypothesize that this illegitimate information was inadvertently introduced by
compiling data from different medical institutions, and by collecting positive and negative
labels from particular institutions with consecutive patient IDs.

Irrespective of the origin of the information leakage, a clear-cut criterion to detect this
case of invalidity is an application of the transformation invariance test for nominally
scaled variables. Patient IDs constitute an assignment of numerals according to the rule
that one should not assign the same numeral to different patients, or different numerals to
the same patient. Furthermore, the empirical operation of the determination of equality
by an assignment of an ID should be invariant to the transformational operation of
permutations. A transformation invariance test for nominally scaled variables would
apply the operation of permutation to patient IDs, however, exactly this operation would
defeat the predictive power of the feature in the example of Rosset et al. [2009] since
the binning in Figure 2.6 that could be used to predict labels on the test data would no
longer be possible. Thus a breach of validity can be assessed according to our criterion
that the predictive power of the feature must be independent of a transformation of its
scale representation.

Discussion. The status of the transformation invariance test as a validity metric is
that of a descriptive tool from exploratory data analysis that applies to specific feature
representations and models trained on them. Clearly, the validity problem introduced
by the patient ID feature in the example above could also be detected as an instance
of a dataset bias, by comparing the sample correlation coefficient of this feature to the
labels on the KDD Cup 2008 data to the sample correlation coefficient on any other data.
Such a relative comparison would inherit all problems of finding the right correlation
measure, of capturing nonlinear associations, and of choosing appropriate thresholds
that plague the dataset bias test. If applicable, the transformation invariance test allows
for a clear assessment of a breach of validity. However, the obvious shortcoming of this
test is the limited number of cases where validity problems are due to violations of scale
representations.

24



2.4.3. A Model-Based Test for Circularity

The notion of circularity in this work is inspired by the discussion of validity in philosophy
of science given in Section 2.2.3. A central requirement on measurement theories stated
by Balzer and Brendel [2019] is that the function to be measured — for example, the
function expressed by a machine learning model pθ(x) that predicts a label ŷ for a
given input feature representation x — and the function that is given — for example,
the assignment of a gold standard label y to an input x by a deterministic functional
definition p(x) — need to be disjoint. This principle is violated if the criteria that
are used to define the gold standard labels are incorporated as features in the data
representation, and consequently, as features in the machine learning model. As the
experiments presented below show, including measurements that are deterministically
related to the target labels as input features to machine learning leads to a circularity
in prediction where the machine learning model learns nothing else but to reconstruct
the known functional definition. Based on a machine reconstruction of the known target
definition, machine learning yields perfect predictions which break down on real-world
data where the target-defining measurements may not or only incompletely be available.

In the following section we present a circularity test that shows, for given datasets
and black-box machine learning models, whether the target functional definition can
be reconstructed from input feature representations, or whether it has been used in
training a machine learning model. We will exemplify the notion of circular features
with instances from medical data mining and from cross-lingual information retrieval.
In contrast to the descriptive statistics of the dataset bias test and the transformation
invariance test, the circularity test takes a model-based approach. This means that the
test applies techniques of machine learning itself by fitting interpretable probabilistic
models from the well-understood family of generalized additive models to data annotation
and model prediction experiments, and by performing statistical tests on the fitted models.
Furthermore, the circularity test does not require a designated out-of-domain dataset for
comparative evaluation, but rather it can be applied to a single dataset.

GAMs, Deviance, and Nullification

The first prerequisite of a model-based circularity test is the availability of an expressive
and yet interpretable model fitted to data D = {(xn, yn)}Nn=1 resulting from a data
annotation or model prediction process. We start with distributional assumptions on
our modeling approach. The standard assumption is that the deviations of the response
variable Y n around its mean µn = E[Y |xn] are Gaussian with variance σ2:

Y n − µn = εn, where εn ∼ N (0, σ2) for n = 1, . . . , N. (2.2)

As a model for µ, we adopt the highly expressive and yet interpretable class of Generalized
Additive Models (GAMs) that originated in the area of biostatistics [Hastie and Tibshirani,
1990] to circumvent the restriction of strictly linear features in generalized linear regression
models. The key idea of GAMs is decomposing a multivariate function into a sum of
functions with lower dimensional inputs, called feature shapes, which are learned from
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the data. The one-dimensional feature shapes fk(xk) for each feature xk (or pairs of
features (xi, xj)) in x = (x1, x2, . . . , xp) are additively combined and can be nonlinear
functions themselves. The model is intelligible since the contribution of each feature
xk to the prediction can be interpreted by visualizing feature shapes via plotting fk(xk)
against xk, especially for one- or two-dimensional features shapes. The general form of a
GAM assumes Y to be a random variable from the exponential family, and g(·) to be a
nonlinear link function:

g(µ) =

p∑
k=1

fk(xk) +
∑
i 6=j

fij(xi, xj). (2.3)

The additive Gaussian error model is recovered by using the identity link function
g(µ) = µ, and specifying the distribution of Y n to be of the Gaussian subclass of the
exponential family:

Y n =

p∑
k=1

fk(x
n
k) +

∑
i 6=j

fij(x
n
i , x

n
j ) + εn, where εn ∼ N (0, σ2) for n = 1, . . . , N. (2.4)

In the following examples, feature shapes are modeled by regression spline functions.
For mathematical background on modeling with splines and on estimation of GAMs we
refer the reader to Appendix A.1.

The first part of our statistical test for circularity based on GAMs is a measure for the
fit of the model to the data D = {(xn, yn)}Nn=1. We will use the likelihood-based criterion
of scaled deviance of a model for this purpose. McCullagh and Nelder [1989] define it
as a metric proportional to the difference between the log-likelihood `(µ) of a model µ
to the log-likelihood `∗ of the saturated model, i.e., to the model in the distributional
family that achieves the highest possible likelihood value given the data:

D∗µ = 2(`∗ − `(µ)). (2.5)

The saturated model corresponds to an exact fit by setting the fitted values equal to
the observed data, thus it does not depend on parameters. The distribution of a single
observation of the additive Gaussian model with known variance σ2 is

p(yn|µn, σ2) =
1√

2πσ2
exp(−(yn − µn)2

2σ2
), (2.6)

with log-likelihood

`(µn) = −1

2
log(2πσ2)− (yn − µn)2

2σ2
. (2.7)

Setting µn = yn in the saturated model yields `∗ = −1
2

log(2πσ2) so that

D∗µ = 2(`∗ − `(µ)) =
(yn − µn)2

σ2
. (2.8)
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Apart from the scaling factor σ2, this metric is identical to the residual sum of squares R2,
which is a standard measure of model fit in statistics. Following Hastie and Tibshirani
[1986], we use the percentage of deviance explained to make the metric more interpretable,
and denote it by D2 in analogy to R2:

D2(µ) = 1−
D∗µ
Dµ0

, (2.9)

where Dµ0 is the deviance for the model µo that uses just a constant intercept term
(without any predictor variables) for all response variables, yielding D2(·) ∈ [0, 1].

The intended usage of the D2 metric in a circularity test on a given dataset D =
{(xn, yn)}Nn=1 is to train a set of GAMs, one for each member of the powerset of features,
and to find the model with maximal D2 and smallest degrees of freedom.12

In addition to this metric, we employ a second check to differentiate input features that
are deterministically related to the labels in the data from possible additional features in
the input data that are irrelevant to the label-defining function. Here we make use of the
consistency property of the maximum likelihood estimator used to fit GAMs (see Wood
[2017]).

Definition 2.4 (Consistency).
Let M : = {pθ : θ ∈ Θ} be a parametric statistical model where θ 7→ pθ is injective.
Further, let pθ0 ∈M denote the true model of the data generating process for a dataset
D = {(xn, yn)}Nn=1. Then an estimator θN is called consistent iff for all ε > 0 holds

P (|θN − θ0| > ε)
N→∞−−−→ 0.

Given the true model of the data generation process, the consistency property of GAMs
allows us to identify circular features as those that approximate the data generating
process with a non-zero feature shape, and features that are not related to the data
generation process as those with constant zero feature shapes.

Proposition 2.1 (Nullification.).
Let pGAM

θN
be a GAM that optimizes the likelihood of data D = {(xn, yn)}Nn=1 that have

been produced by a deterministic data labeling function p : xn → yn, n = 1, . . . , N .
Furthermore, assume that p can be approximated by a model MGAM = {pGAM

θ : θ ∈ Θ}.
Then any feature xk with a non-zero contribution to the deterministic labeling function
p(xk) will have a non-zero feature shape f(xk), and any other feature xj, j 6= k in the
feature set will have a feature shape of a constant zero function, with a probability that
converges to 1 as the sample size increases.

Proof sketch. The proposition follows directly from the consistency of maximum
likelihood estimators for GAMs. This has been shown, for example, by Heckman [1986]

12In the simplest form, degrees of freedom of a model are calculated by the number of tuneable
parameters. For example, a GAM for n = 1, . . . , N data points, modeling feature shapes for each
of k = 1, . . . , p input features with cubic splines of dk parameters for each feature, together with a
smoothness penalty for each of feature, adds up to (N ×

∑p
k=1 dk) + p degrees of freedom. For the

notion of effective degrees of freedom and its computation, see Appendix A.1.
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for GAMs based on cubic regression splines. By consistency, the maximum likelihood
estimator θN will converge in probability to the data generating parameters θ0. Since the
model MGAM = {pGAM

θ : θ ∈ Θ} is identifiable, by the injectivity of the mapping θ 7→ pθ,
the data generating parameters θ0 will identify the data generating model pGAM

θ0
. By the

additive structure of this model, only features determining the feature-label relations in
the data D = {(xn, yn)}Nn=1 have non-zero feature shapes, and the feature shapes of all
other features in the feature set have constant zero values. �

The criterion expressed in Proposition 2.1 will be called the nullification criterion.
Based on interpretable models in form of GAMs, the D2 metric, and the nullification
criterion, we define a circularity test that proceeds by searching for the model with
highest deviance and lowest degrees of freedom over the powerset of features, and by
confirming that all other features except the ones found in the first step are nullified.

Definition 2.5 (Circularity Test).
Given a dataset of feature-label relations D = {(xn, yn)}Nn=1 where xn =
(x1, x2, . . . , xp) is a p-dimensional feature vector, let C ⊆ P({1, . . . , p})
indicate the set of candidate circular features in dataset D, and let
MC := {µc : c ∈ C} be the set of models obtained by fitting a GAM
based on feature set c to the data D. A set of circular features c∗ is
detected by applying the following two-step test.

1. c∗ = argmaxc∈C D
2(µc) where D2(µc∗) is close to 1, and in case

the maximizer is not unique, the maximizer is chosen whose
associated GAM µc∗ has the smallest degrees of freedom.

2. The feature shapes of every feature xj : j ∈ {1, . . . , p}
c∗ added to the GAM µc∗ is nullified in the resulting model.

Note that identifiability and consistency of maximum likelihood estimators is an
essential property of spline-based GAMs as described in Hastie and Tibshirani [1990],
Heckman [1986], Wood [2017]. This is not necessarily true of neural network-based neural
additive models (NAMs) [Agarwal et al., 2020], for which identifiability or consistency
has not been shown. Furthermore, note that the circularity test defined above is not
restricted to single features, but it allows assessing the circularity of feature sets by fitting
and testing the deviance and nullification of multivariate GAMs. We will present an
example from medical data science below where the functional definition of the target
label is based on a combination of two variables. Lastly, note that a useful practice to
specify the set of candidate circular features in Definition 2.5 is to sort the features by
their bivariate feature-label correlation. As will be illustrated in the examples below,
while the feature-label correlation is not sufficient to make a clear-cut distinction between
circular and non-circular features, it allows sorting circular features before non-circular
features and thus it can avoid the computational cost of training a separate GAM on
each member of the powerset of features.
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Table 2.3.: Definition of relevance ranks based on patent citation information. Note that
the definition is exclusive so that only one condition applies at a time.

Condition Relevance Score

no citation 0
inventor citation 1
examiner citation 2
family patent 3

Circularity in Data Annotation

In the following examples, we assume that we have access to a dataset D = {(xn, yn)}Nn=1

of input features x = (x1, x2, . . . , xp) and gold standard labels y. Our goal is to investigate
if the dataset includes features that allow an exact reconstruction of the target functional
definition. Since machine learning models optimized to minimize training error will
directly inherit such features, a circularity test should be applied that detects such
features before they are applied for machine learning predictions in real-world scenarios.

Circularity in Patent Prior Art Data. Let us consider as a first example for circu-
larity the case of data annotation in cross-lingual patent retrieval. This task is a subclass
of cross-lingual information retrieval and economically extremely relevant. If a company
wants to file a patent application, it is important that the new patent cites all previous
patents that are relevant to the claim of its originality. The task of identifying relevant
patents is called “patent prior art search”. In practice, the patent applicant adds all
citations that are relevant, to the best of his knowledge, and then this list is refined
by patent examiners specifically trained on certain areas of technology. The machine
learning task is to aid the patent inventor or patent examiner by automatic prior art
search for a set of patent queries over a search repository of foreign-language patents
documents.

An established technique to create large datasets for patent prior art search is to
determine relevance ranks from different types of patent citations [Graf and Azzopardi,
2008, Guo and Gomes, 2009, Piroi and Tait, 2010]: The most relevant patents are those
in the same patent family, indicating the same invention disclosed by common inventors
and patented in more than one country (relevance level r = 3); very relevant patents are
the ones cited in search reports by patent examiners (r = 2); and lowest relevant patents
are citations added by patent applicants (r = 1). These four exclusive conditions build a
rule system shown in Table 2.3 that allows deterministically assigning relevance ranks to
all query-document pairs.

Large-scale information retrieval datasets such as Yahoo!’s ”Learning to Rank” data
[Chapelle and Chang, 2011] or Microsoft’s LETOR dataset [Qin et al., 2010] contain
complex measurements such as BM25 scores [Robertson and Zaragoza, 2009], language
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Table 2.4.: Feature set for cross-lingual patent retrieval.

Feature Meaning Range

(1) neural similarity score learned by neural network R
(2) tf-Idf cosine similarity of tf-Idf scores R
(3) inventor indicator for inventor citation {0, 1}
(4) examiner indicator for examiner citation {0, 1}
(5) family indicator for family patent {0, 1}

model scores [Zhai and Lafferty, 2001], or PageRank scores [Brin and Page, 1998] as
features. In our cross-lingual patent retrieval experiment, we use two complex features,
one consisting of the cosine-similarity of the tf-Idf scores [Jones, 1972] from the Google-
translated query and the search document, the other being a neural similarity score
derived by training a deep neural network on query and search document text and
category data [Kuwa et al., 2020].

The data used in our experiment are a subset of the dataset used by Kuwa et al. [2020]
for cross-lingual patent retrieval from Japanese to English. The gold standard relevance
ranks were been produced by the deterministic rule system shown in Table 2.3. The data
consist of 425,065 observations, including 2,000 patent queries (each with around 250
relevant documents at various levels of relevance) and 200 sampled irrelevant documents
per query. For our experiment, the data are split into a training set of 1,500 queries
(with 318,375 observations of query-document pairs), and a test set of 500 queries (with
106,690 observations of query-document pairs).

Let us assume the following scenario: A research team wants to use our dataset to
train a cross-lingual patent retrieval system without, however, knowing how the gold
standard relevance rankings were defined. The goal of the research team is to find out if
a deterministic procedure has been used to assign relevance ranks, and to reconstruct
the deterministic rule system in an intelligible way, in order to avoid including features
on which target labels are deterministically defined into their model. On suspicion that
the standard approach of using citation information could have been used to define gold
standard relevance rankings, our research team extracts information on patent citations
from the raw patent representations and includes them to the set of input features. In
order to test the validity of the dataset, the research team applies the circularity test to
the powerset of features that can be constructed from the input features in Table 2.4.

Table 2.5 shows the top five models trained during the search procedure. All models
that include the citation features inventor, examiner, and family, perfectly reproduce the
training data, as shown by values of D2 = 100%. The model consisting of only these three
features, excluding tf-Idf or neural, is the least complex one. Furthermore, as shown in
Figure 2.7, the feature shapes of these three features show that they perfectly reconstruct
the target function. This is a first indicator that the set of citation features has been used
to deterministically define the target labels, thus revealing them as potentially circular.
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Table 2.5.: Top five models visited during circularity search for IR training data.

Rank Included Features D2 Complexity

1 {inventor, examiner, family} 100% 5
2 {inventor, examiner, family, neural} 100% 6.33
3 {inventor, examiner, family, tf-Idf} 100% 7.95
4 {inventor, examiner, family, neural, tf-Idf} 100% 11.1
5 {examiner, family, neural, tf-Idf} 95% 22

Figure 2.7.: Feature shape of citation features reconstructing target labeling function.

Further circularity evidence is obtained by comparing the feature shapes of a model
trained on all features to the feature shapes of one where the circularity candidates, i.e.,
the citation features, were omitted. The left column of Figure 2.8 shows the feature
shapes of the tf-Idf and neural features in a model without citation features. The strong
contribution of these features to the prediction of relevance scores is visible with a D2

value of 62%. For example, the plot on the middle left shows that relevance score is a
nearly linear function of tf-Idf score. The top right plot of Figure 2.8 shows the feature
shape of the citation features for a model that includes all features. Like any model that
includes citation features, this model has a D2 value of 100%, and it allows us to exactly
reconstruct the theoretical step function of relevance scores. However, as seen in the
middle and bottom right plots of Figure 2.8, the contribution of the tf-Idf and neural
feature in the model that combines all features is completely nullified. We note that this
nullification in Figure 2.8 is perfect in that the feature shapes of the nullified features
are constant zero lines. This confirms our analysis of the citation features being circular
in the investigated patent retrieval dataset.
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Figure 2.8.: Feature shapes of GAM trained with (right column) and without access
to citation information (left column), showing nullification of non-circular
features in the presence of circular features.

Circularity in Medical Data. Another frequent case of circularity in data annotation
is the measurement-based determination of gold standard labels in medical data science.
A typical task in medical data science is the construction of machine learning based
(early) disease diagnosis systems. Let us consider the case of sepsis which is a prevalent
(especially among intensive care patients) and lethal disease [Rudd et al., 2020] whose
early stages are hard to diagnose. Early diagnosis, however, is crucial to start an effective
treatment. Since the introduction of the Sepsis-3 definition [Seymour et al., 2016, Singer
et al., 2016], the Sequential Organ Failure Assessment (SOFA) score [Vincent et al., 1996]
has played a crucial role in sepsis diagnosis. Together with a suspicion of infection, a
defining property of sepsis according to the Sepsis-3 definition is a change in total SOFA
score ≥ 2 points consequent to an infection, for SOFA scores defined for six organ systems.
The SOFA scores are based on thresholds of clinical measurements. For example, the
SOFA scores for the liver and the kidney are based on thresholding measurements of
biochemical processes occurring in the respective organ systems. A standard technique
to assign gold standard sepsis labels is to use the criteria of suspected infection and
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Table 2.6.: Definition of liver SOFA score based on bilirubin levels.

Condition Liver SOFA Score

0 < bilirubin ≤ 1.2 0
1.2 < bilirubin ≤ 1.9 1
1.9 < bilirubin ≤ 5.9 2
5.9 < bilirubin ≤ 11.9 3

bilirubin > 11.9 4

two-point increase in SOFA score within a 24-hour period, e.g., in the 2019 PhysioNet
Challenge on Early Prediction of Sepsis From Clinical Data [Reyna et al., 2019].

Let us consider the following scenario: Our goal is to predict SOFA scores by ma-
chine learning. Similar to the PhysioNet Challenge dataset [Reyna et al., 2019], the
gold-standard SOFA labels in our data are assigned by applying thresholds on clinical
measurements, following the Sepsis-3 definition, to data from 620 intensive care patients
from the surgical intensive care unit of the University Medical Centre Mannheim, Ger-
many (see Schamoni et al. [2019] for a detailed description). Let us first consider the
liver SOFA score: Out of the 45 features used in Schamoni et al. [2019], we consider
the clinical measurements of bilirubin (bili), aspartate aminotransferase (asat), quick-inr
(quinr), alanin aminotransferase (alat), and cardiac output (hzv) as possible features
to describe the liver SOFA score. These features were selected based on the magnitude
of their bivariate correlation with the liver SOFA score. As shown in Table 2.6, the
deterministic rule to define the SOFA score for the liver is based solely on intervals of
bilirubin values. Similar to the data of Reyna et al. [2019], our feature set thus includes
the clinical measurements on which SOFA labels, here liver SOFA, are defined. Our goal
is to apply a statistical test that exposes this dataset design as circular, although or
precisely because it is so common in measurement-based sciences.

Figure 2.9 shows the feature shape of the bilirubin feature for the liver SOFA score for
a GAM model with 100 knots that includes solely the bilirubin feature. Unsurprisingly,
the GAM model exactly reconstructs the step function defined by bilirubin intervals.

Figure 2.10 shows the feature shapes of two more complex GAMs trained on the liver
SOFA data. Both models include the features asat, quinr, alat, and hzv, however, with
(right column) and without (left column) access to bilirubin measurements. As any model
that includes the bilirubin feature, the model in the right column has a D2 values of
100%, where the model that includes bilirubin as sole feature has the least degrees of
freedom out of all models in the powerset. As shown in the left column of Figure 2.10, a
model trained on the four features asat, quinr, alat, and hzv, excluding bilirubin, explains
the data at a D2 value of 26% and shows non-neglible contributions of these features.
However, as soon as the bilirubin feature is added to the model, the contribution of these
features is completely nullified, as seen in the last four rows of the right column. We note
that even at an enlarged scale, the feature shapes of the nullified features approximate
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Figure 2.9.: Feature shape of bilirubin feature reconstructing the target labeling function.

Table 2.7.: Definition of kidney SOFA score based on creatinine and urine levels.

Condition 1 Condition 2 kidney SOFA Score

0 < creatinine ≤ 1.2 500 < urine 0
1.2 < creatinine ≤ 1.9 1
1.9 < creatinine ≤ 3.4 2
3.4 < creatinine ≤ 4.9 200 < urine ≤ 500 3

creatinine > 4.9 0 < urine ≤ 200 4

constant zero lines. This allows us to identify bilirubin as a circular feature in the dataset
for liver SOFA score.

Things become a bit more complex, but also more interesting, for the kidney SOFA
score. The features in this experiment consist of clinical measurements of creatinine
(crea), urine output in the previous 24 hours (urine24), pH-value of the arterial blood
(artph), blood urea nitrogen (bun), body temperature (temp) and serum lactate (lactate).
As shown in Table 2.7, the deterministic rule scheme for the kidney SOFA score is
defined as a step function of the kidney status, depending on the maximum score of two
conditions, based on measurements of creatinine and urine output.

The correlation analysis shown in Figure 2.11 demonstrates that all of the above-
defined features are moderately correlated with kidney status. Thus a distinction
between “circular” and simply “strongly correlated” features requires thresholding and is
an improper tool to assess invalidity.

Training a GAM consisting of the single feature of urine output on the ICU data shows
that the feature shape of the urine feature almost exactly models the theoretical step
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Figure 2.10.: Feature shapes of GAM trained with all features (right column) and without
access to bilirubin measurement (left column), showing nullification of non-
circular features in the presence of circular features.

function (Figure 2.12, left plot). The GAM trained with creatinine as the only feature
(Figure 2.12, right plot) shows a less perfect fit of the theoretical step function. This is
indicated by the empty tassels in the rug plot for the creatinine feature shape. As can
be seen by inspecting the bivariate distribution of creatinine and urine in our data in
Figure 2.13, most data points with critically high creatinine level also have a critical low
urine level, thus the variables are highly confounded. The reason for the suboptimal fit
of the theoretical step function in the case of creatinine is data sparsity in the areas of
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Figure 2.11.: Correlation analysis of clinical measurements with kidney SOFA score.

Figure 2.12.: Feature shape of creatinine and urine features reconstructing the target
labeling function.

urine output > 500 and creatinine > 1.2. These are the data areas where a high kidney
status would be caused solely by high creatinine levels. However, there are enough data
points across the whole range of urine outputs so that a satisfactory fit of the theoretical
step function is possible by the feature shape of the urine feature. Still, the highest D2

value of 95% with the fewest degrees of freedom out of all models is obtained by a model
including only creatinine and urine as features, thus serving as a strong indicator for
circularity of this feature set.

Figure 2.14 compares the feature shapes of a model using all six features (right column)
with the features shapes of a model that excludes the candidate circular features of
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Figure 2.13.: Bivariate distribution of urine and creatinine output in data.

creatinine and urine (left column). The top two plots in the right column are identical to
the feature shapes of urine and creatinine shown in Figure 2.12. The D2 value of the
models on the right reach 95%, compared to 25% for the models without circular features.
The bottom four plots show that the contribution of any feature in the model without
creatinine and urine (left column) is nullified by inclusion of urine and creatinine as
features (right column). We note that even at an enlarged scale, the feature shapes of the
nullified features approximate constant zero lines. This again confirms the identification
of urine and creatinine as circular features in the dataset for SOFA score.

Circularity in Machine Learning Prediction

A further use case of the circularity test is an analysis of the validity of black-box machine
learning models. In this case we do not have access to the training data that were used
to optimize the machine learning model. Instead, all we have is model predictions on
test data T = {(xm, ŷm)}Mm=1. The question we would like to answer is whether we can
detect, from the test-set predictions of the black-box model alone, whether the model
that performs the predictions relies on features that allow reconstructing a deterministic
target functional definition.

Circularity in Machine Learning for Patent Prior-Art Search. Let us consider an
example that is inspired by the KISS principle (”keep it simple and straightforward”)
that has beenapplied in patent prior art search by Magdy and Jones [2010]. The idea
of this principle is to automatically obtain the citations of a given query patent in a
patent retrieval task, and to improve the search by incorporating this information into
the search results. Magdy and Jones [2010] apply this principle in a white-box manner
by directly appending IDs of cited patents to the result list of a simpler information
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Figure 2.14.: Feature shapes of GAM trained with all features (right column) and with-
out access to urine and creatinine measurements (left column), showing
nullification of non-circular features in the presence of circular features.

retrieval technique such as tf-Idf [Jones, 1972]. We are interested in the scenario where
the information retrieval model is a black box, i.e, where we can access the machine
learning model only via its predictions on test data. The approach we take is inspired
by knowledge distillation where the predictions of a black-box teacher model are used
as training data for a GAM student model that is based on all combinations of input
features. The circularity test described above is then applied to the GAM with the goal
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of detecting circular features that define the target label among the candidate input
features.

The black-box model used in our experiment computes a nonlinear combination of the
scores listed in Table 2.4 using a feedforward neural network (or multi-layer perceptron
(MLP)).13 In our experiment, the target labels are defined as binary relevance ranks for
patent queries, and were constructed deterministically by assigning a relevance level of 1
for either inventor citation, examiner citation, or family membership, and a relevance level
of 0 for all other documents. The parameters of the teacher neural network are trained for
logistic regression on 1,500 queries, resulting in 318,375 observations of query-document
pairs. The predictions were thresholded at 0.5 and evaluated with respect to F1 score
[Manning et al., 2008]. The teacher neural network on the test set of 500 queries reaches
100% F1. As we will see, this result is too good to be true, since it can be traced back to
the teacher neural network reconstructing the deterministic target function while ignoring
all other features of the model.

As a first circularity check, we fit a student GAM14 model that has access to all
features in Table 2.4 and treats the neural teacher model’s predicted labels similar to
gold standard labels. The student model is trained on the 500 test queries that were
annotated with relevance ranks predicted by the teacher neural network, resulting in
106,690 query-document observations. Figure 2.15, right column, shows a student model
including citation features, reaching a D2 value of 100%. The three plots in this column
show that any model including citation features has learned to rely exclusively on them.
A student model that does not include citation features, but only tf-Idf and the neural
joint score, is shown in the left column of Figure 2.15. It reaches a respectable D2 value
of 69% and shows a strong contribution of the tf-Idf and neural joint score features to the
prediction. However, the step function feature shapes in the left column are completely
nullified in the student model in the right column that includes citation features, shown
in the flat lined feature shapes in the right column. This confirms that the teacher
model must have incorporated the functional definition of relevance ranks via citations
as feature into the model.

In order to confirm that our student GAM is not hallucinating circularity, we conducted
a control experiment where we trained a teacher neural network explicitly without access
to the citation features. As shown in Figure 2.16, the teacher without citation information
yields an F1 score of 75.9% on the test set, while the teacher with citation information
reaches an F1 score of 100%. Next, we fitted two student GAMs that had access to all
features. One GAM was distilled from the teacher trained with citation features, the
other GAM was distilled from the teacher trained without citation features. The first
GAM is identical to the right column of Figure 2.15 and repeated in the right column
of Figure 2.16. We can clearly see that the function represented by the teacher with

13The feedforward neural network was implemented in pytorch.org. It consists of 7 layers, with an
ascending, then descending number of neurons per layer, and a tanh activation function. It was
trained for regression using PyTorch’s SGD optimizer, with batch size 64, learning rate .01, without
dropout, for 5 epochs. All other optimizer settings are default values of PyTorch’s SGD optimizer.

14For the binary classification data, we use a GAM that assumes a binomial response variable and a
logistic link function.
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Figure 2.15.: Feature shapes of two student GAMs for the same teacher which had access
to all features during training. The student in the right column did have
access to citation features, while the student in the left column did not.
Features in the presence of citation features are nullified.

citation features is identical to the deterministic definition of the target. The student
distilled from the teacher without citation access, shown on the left, again confirms a
strong contribution of the tf-Idf and neural score features to the prediction, however, this
contribution is nullified if the teacher has access to citation features.

Furthermore, we performed an ablation study where all citation features were set to
zero on the test data. This experiment demonstrates the effect of the citation features
on the system performance. We observed a dramatic drop in F1 score for the teacher
incorporating citation features, from 100% on the test set including citation features to
0% on the ablation test set not including citation information.

An example of partial circularity is given in Figure 2.17. In this example, only
information about inventor citations (left column) or information about inventor and
examiner citations (right column) is included as features for the teacher model. The
inclusion of the first type of information is similar to the effect of bias features which
are strongly correlated with the target label, but do not suffice to exactly reconstruct
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Figure 2.16.: Features shapes of two student GAMs that had access to all features, where
the teacher in the right column had access to citation features, while the
teacher in the left column did not. Features in the presence of citation
features are nullified.

the target function. Information about examiner citations can be seen as an illegitimate
feature since relevance judgments obtained from patent examiners are ”leaks from the
future” [Kaufmann et al., 2011] if patent prior art search is supposed to support the
patent examiner. Our analysis shows that a teacher network that has access to inventor
and examiner citations reaches an F1-score of nearly 100% on the test set, while a teacher
that has access to inventor citations only reaches an F1-score of 83%. The feature shapes
of the student GAMs trained on predictions of the respective teacher models clearly
identify the use of the respective features during training, shown in the top row of Figure
2.17. For a teacher that uses only inventor citations, the feature shapes of the tf-Idf
and neural features of the student GAM still show a strong contribution (second and
third row in left column of Figure 2.17). However, a teacher that uses both inventor
and examiner citations diminishes the contribution of the tf-Idf feature, shown by a
right-shift of the respective feature shape (second row in right column of Figure 2.17) and
nullifies the contribution of the neural score feature (third row in right column of Figure
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Figure 2.17.: Feature shapes of cross-lingual patent retrieval features and partially circular
citation features against relevance scores.

2.17). Since the functional definition of the target relevance labels has only partially
been included in training of the teacher model, the features are only partially nullified in
the student GAM.

Circularity in Machine Learning in Medical Data Science. Let us next consider
circularity in the prediction of liver SOFA scores. We want know whether we can tell from
the test set predictions alone, without knowing the training data, if a neural network is
able to reconstruct the functional definition of liver SOFA scores given in Table 2.6, and
whether the learned predictions of the neural network are only applications of this rule.
We again employ knowledge distillation: As a teacher network, we consider a feedforward
neural network15 that was trained for regression on 323,404 measurement points of the

15The feedforward neural network was implemented in pytorch.org. It consists of 7 layers, with an
ascending, then descending number of neurons per layer, and a ReLU activation function [Glorot
et al., 2011]. It was trained for regression using PyTorch’s SGD optimizer, with batch size 64, learning
rate .01, and dropout rate of 0.2 in hidden layers, for 5 epochs. All other optimizer settings are
default values of PyTorch’s SGD optimizer.
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Figure 2.18.: Distribution of teacher model score by target class on liver SOFA test set.

ICU data for 620 patients described in Schamoni et al. [2019]. Furthermore, thresholds
to turn the real-valued teacher network output scores into discrete SOFA scores were
learned. The predictions were tested on another 80,671 measurement points. The train
and test data include all 45 clinical measurements described in Schamoni et al. [2019]
as input features and use liver SOFA scores that were assigned automatically following
the functional definition in Table 2.6 as gold standard labels. The accuracy [Manning
et al., 2008] of the feedforward teacher network on the test data is 98.1%, where the
most accurate predictions were made for the target scores 0, 1, 2, and 3, with minor
mispredictions for target class 4 (see Figure 2.18).

Again, this result seems too good to be true, and requires an investigation by a
circularity test. Starting from the feature representation of all 45 clinical measurements
described in Schamoni et al. [2019], we select the five features that are most highly
correlated with the label predicted by the teacher model: bilirubin (bili), thrombocytes
(thrombo), cardiac output (hzv), systematic vascular resistance index (svri), and urine
output (urine). Based on the predictions of the teacher feedforward network and these five
features, we train a GAM student model with 100 knots. As can be seen from Figure 2.19,
top right, the objective function of liver SOFA scores can be recreated very accurately by
GAM student models including the bilirubin feature with a D2 value of 99%. Out of all
models, the one that includes only bilirubin as feature has the fewest degrees of freedom.
The left column shows that all other features have a strong contribution to the prediction
if bilirubin is not included in the model, yielding D2 values of 70%. However, as can
be seen in the right column, the contribution of all other features except bilirubin is
nullified in any model including bilirubin. To conclude, we identified the bilirubin feature
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Figure 2.19.: Feature shapes of two student GAMs for the same teacher which had access
to all features during training. The student in the right column did have
access to bilirubin, while the student in the left column did not. Features
in the presence of bilirubin features are nullified.

as sufficient to perform a deterministic prediction of the liver SOFA scores assigned by
the teacher neural network, while we ruled out other features as deterministic predictors
despite their strong correlation with the predicted target labels. We can therefore assume
that the neural network that produced the test set predictions included bilirubin as
circular feature during training, and it learned nothing but how to reproduce the known
deterministic rule to assign liver SOFA scores based on bilirubin levels.

Let us further consider circularity in model prediction for the more complex kidney

44



Figure 2.20.: Distribution of teacher model score by target class on kidney SOFA test
set.

SOFA score. As a teacher model, we train the feedforward neural network described
above16 for regression on automatically assigned kidney SOFA labels, following the
functional definition in Table 2.7. The accuracy of the teacher feedforward network on
the test labels is 92.2%, with minor misclassifications happening for target scores 2 and 3
(see Figure 2.20). Out of the 45 input features, we select the five features that are most
highly correlated with the kidney SOFA score predicted by the teacher model. These
are the clinical measurements of creatinine (crea), urine output in the previous 24 hours
(urine24), pH-values of arterial blood (artph), blood urea nitrogen (bun), and bilirubin
(bili). We train a student GAM with up to 230 knots on the these five features and the
labels predicted by the teacher model. As can be seen in the top two plots on the right
of Figure 2.21, the theoretical step function can be reasonably approximated in the areas
where enough training data points are available. For example, a model trained on the
single feature urine output (top right plot in Figure 2.21) appropriately represents the
theoretical steps by the function estimate. A sketchier approximation is obtained from
a model with creatinine as the only feature (second plot on the right of Figure 2.21).
This is due to data sparsity, indicated by the empty tassels in the rug plot. However, the
model with the fewest degrees of freedom out of all models and highest D2 value of 93% is
the one that only includes urine and bilirubin as features (right column), whereas models
without creatinine and urine (left column) reach a D2 value of 61%. Furthermore, the
contributions of features like bilirubin, bun, or artph, as shown by the feature shapes in
the left column, are nullified if creatinine and urine are included in the model, as shown
in the third to fifth plot in the right column of Figure 2.21. Again, this confirms that
creatinine and urine are circular features that can deterministically predict the target
labels assigned by the teacher neural network. We can therefore assume that the teacher
neural network must have included creatinine and urine as features during training, and

16Minor differences in meta-parameter settings to the model trained for liver SOFA prediction include a
smaller batch size of 32 and a dropout rate of 0.
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Figure 2.21.: Feature shapes of two student GAMs for the same teacher which had access
to all features during training. The student in the right column did have
access to creatinine and urine features, while the student in the left column
did not. Features in the presence of creatinine and urine features are
nullified.

it thus learned nothing besides how to reproduce the known deterministic definition of
kidney SOFA scores based on thresholds of creatinine and urine.

Discussion. The examples discussed in this section use real-world datasets and are based
on the building blocks of machine learning algorithms used in benchmark competitions in
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the fields of cross-lingual patent retrieval [Piroi and Tait, 2010] and medical data science
[Reyna et al., 2019]. We showed that an inclusion of measurements that deterministically
define target outcomes as input features in the data representation allows machine
learning algorithms to reconstruct the functional definition of the target, leading to
circular predictions that are based solely on what is known beforehand. Our circularity
test is a tool for a clear-cut identification of circular features in machine learning data
and black-box models such as neural networks.

Including circular features into a model can happen deliberately or inadvertently.
However, in any case they will hinder effectively transferring machine learning expertise
to real-world applications in these economically and socially important fields and should
clearly be avoided. Firstly, machine learning models trained on data including the
defining measurements for target outputs will yield nearly perfect predictions on input
data including the defining measurements, but they cannot be transferred to unseen
data where the defining features are not or only incompletely available. Secondly, a
circular learning setup that nullifies the contribution of all features except those defining
the target dashes the hope to detect features that could shed new light on predictive
patterns.

In order to avoid validity problems by circular features, any dataset provider or organizer
of a benchmark testing challenge should explicitly disclose the functional definition of
target labels if a deterministic rule was used in the dataset creation. Furthermore,
participants in the benchmark testing challenge should be warned not to include features
that deterministically define the target labels in their models.

Another solution is to rely on implicit expert knowledge in data annotation instead of
following automatic data annotation via deterministic functional definitions. Such an
approach has been presented by Schamoni et al. [2019] for the area of sepsis prediction.
Here the gold standard labels are obtained in the form of an electronic questionnaire
which records attending physicians’ daily judgments of patients’ sepsis status, thus
exploiting implicit knowledge of clinical practitioners. As shown in Schamoni et al. [2019],
the κ agreement coefficient between expert labels and algorithmically generated Sepsis-3
labels is 0.34, which is to be considered minimal or weak agreement. This shows that
even if one could argue that expert decisions are potentially influenced by known sepsis
definitions, the circularity issue in this setup is minimal. Machine learning based on
such non-circular data then allows detecting potentially surprising findings, such as the
identification of increased sepsis risk with higher concentration levels of thrombocytes,
contradicting the SOFA-based Sepsis-3 definition, but in accordance with other research
on sepsis [de Stoppelaar et al., 2014].

What are further potential cases of circularity beyond those discussed here, or in other
words, how likely is it that other datasets and machine learning models exhibit a yet
undetected circularity problem? Critical candidates are machine learning applications in
empirical sciences like medicine that define the objects of their research, e.g., diseases,
by rigid measurement procedures. We conjecture that any disease prediction task in
medical data science needs to be extra cautious to keep measurements that define target
outcomes separate from data representations for machine learning. The same is true for
any other prediction task based on data derived from measurements.
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In sum, promising results for machine learning prediction may well be achieved
even in circular setups, however, cautious analyses are required in order to discern
whether the machine learning prediction is based on an accurate estimate of the known
functional definition from data — something which could have been achieved easier by a
programmatic application of the deterministic thresholding function — or whether the
actual strength of machine learning has been exploited —namely to learn predictions
based on patterns in data that go beyond known deterministic rules.

2.5. Notes on Practical Usage

The techniques presented in this chapter lend themselves to two basic use cases. Firstly,
the validity of a given dataset might be in question. We discussed bias features (Section
2.1.1), illegitimate features (Section 2.1.2), and circular features (Section 2.1.3) as possible
causes for invalidating a dataset. We presented statistical tests in form of the Dataset Bias
Test (Definition 2.2), Transformation Invariance Test (Definition 2.3), and Circularity
Test (Definition 2.5) to identify these types of features.

Secondly, the validity of the predictions of a black-box machine learning model might
be in question. The same statistical validity tests that can be applied to gold standard
data can also be applied to datasets of features and labels predicted by machine learning
models, mimicking a knowledge distillation setup.

The recommended action to take upon detection of a validity problem is clear in case
of illegitimate and circular features: Such features should be discarded from the data
representations since they prevent meaningful machine learning beyond the reconstruction
of information that is either standardly unavailable (in case of illegitimate information)
or already known (in case of circular information). Machine learning approaches like
regularization that foster generalization are not remedies against circular or illegitimate
features, but they simply conceal such problems by preventing overfitting on the dataset
whose validity is in question. In contrast, bias features are an evasive concept since they
are on essential to most tasks, but still undesired. This makes the prevention of bias a
machine learning problem by itself that goes beyond the scope of this book.
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3. Reliability

Reliability is closely intertwined with validity. On the one hand, reliability is a necessary,
but not a sufficient, condition for validity. On the other hand, in the pursuit of high
reliability, validity tends to get lost, for example, by oversimplifying measurement
procedures or by overly strict annotation instructions. More often than not, the notion
of reliability is claimed as the primary criterion for the adequacy of a measurement.
However, the concept of reliability is not clearly defined for predictions in NLP and data
science. There are a multitude of metrics that are commonly applied to measure reliability
in data annotation, and a different set of measures that address reliability of model
predictions. The goal of this chapter is to provide a clear definition of reliability that
applies to data annotation and model prediction alike, and that can be operationalized
into a procedure to assess reliability of data annotation and model prediction in concrete
applications in NLP and data science.

3.1. Untangling Terminology: Reliability, Agreement,
and Others

Krippendorff [2004] states the measurement theory conception of reliability as follows:

A research procedure is reliable when it responds to the same phenom-
ena in the same way regardless of the circumstances of its implementa-
tion.

The terminological confusion starts as soon as the terms ”research procedure” and
”circumstances of its implementation” are given a concrete interpretation. Krippendorff
himself is interested in measuring reliability of data annotations for a fixed sample of
data points by a fixed selection of human coders — the ”research procedure” — given
their different response styles or different exposition environments — the ”circumstances
of their implementation”. Another interpretation that will be of interest in this chapter is
to replace the ”research procedure” by a machine learning model, and the ”circumstances
of the implementation” as variability due to architectural choices or meta-parameter
settings in model optimization.

Reliability of measurements of nominal outcomes is frequently called agreement, unlike
reliability of measurements with continuous outcomes [Hallgren, 2012, Shoukri, 2011], and
it is often reserved for the case of human raters representing the research procedure whose
reliability is in question. However, given the general measurement theoretic definition
above, the concepts of intra-rater agreement (the consistency of annotation results of
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a human rater on repeated trials on same data) can be seen as parallel to test-retest
reliability (the correlation between results of the same test on two occasions under
otherwise identical circumstances). The concept of inter-rater agreement (the consistency
of annotation results of two or more human raters on the same data) can be seen as
parallel to forms of test-test reliability in measurement theory (the correlation between
results of equivalent forms of tests performed under otherwise identical circumstances).

To add to the confusion, Krippendorff [2004] uses the term stability to denote intra-
rater agreement, and he gives inter-rater agreement the name reproducibility. A further
term called replicability is introduced by Dror et al. [2017] to denote consistency over
different datasets from different domains or languages. To complete the confusion, Plesser
[2018] lists different interpretations of the terms replicability and reproducibility, and
adds the term repeatability that brings the variable of different teams of researchers into
the mix. Finally, Goodman et al. [2016] clarify things a bit by making explicit the aspect
of reproducibility by distinguishing methods reproducibility, results reproducibility, and
inferential reproducibility.

In the following, we will stick to the term reliability and provide an operational
definition that applies to data annotation and model prediction processes in NLP and
data science alike. For this purpose, we rely on a unified conceptualization of data
annotation and model prediction as measurement procedures.

3.2. Performance Evaluation as Measurement

Similar to validity, reliability is standardly considered as a property of measurements.
The key concern of a reliability study is to estimate the consistency of measurement scores
across replicated measurements. In Chapter 2, we conceptualized a measurement as the
determination of a function value for a homomorphic mapping of empirical structures into
a numerical system, and we looked at predictions in NLP and data science as instances
of measurements. Furthermore, we characterized predictions by the functional relation
of input features in a p-dimensional feature vector x = (x1, x2, . . . , xp) to labels y in a
dataset D = {(xn, yn)}Nn=1. While in Chapter 2 the actual systems that performed the
predictions were considered fixed and deterministic, here we are interested explicitly
in the possible sources of variation after replicated predictions. In the case of data
annotation, possible sources of variation include human annotators, repeated annotations
by the same annotator, or the test sentences themselves. In the case of machine learning
prediction, possible sources of variation include meta-parameters of the machine learning
models and properties of test data like the lengths of test sentences. We will denote
these meta-features by m = (m1,m2, . . . ,mq). A further difference to the formalization
in Chapter 2 is that in most applications we will work with response signals in form
of a performance evaluation score e of a predicted output ŷ under some evaluation
metric, instead of with the outputs directly. While in case of regression problems such
as the SOFA score prediction discussed in the previous chapter, outputs can be used
directly as response signals, this is not possible for NLP applications where outputs are
structured labels. However, replacing labels by corresponding evaluation scores allows
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us to measure reliability for structured prediction problems. For example, in the case
of data annotation in interactive machine translation, possible performance evaluation
metrics are post-editing time or human translation edit rate [Snover et al., 2006]. In
the case of machine learning predictions, for example in machine translation, possible
performance evaluation metrics are BLEU [Papineni et al., 2002] or TER [Snover et al.,
2006]. Furthermore, note that investigating sources of variation caused by properties of
the test data requires the performance evaluation scores to be decomposable over test
outputs. We will see different cases of evaluation scores e in the experimental examples
discussed below.

The problem of the reliability of a prediction can now be refined as the question of how
consistent the relationship between meta-features m and performance scores e is under
replicated performance measurements. Since every configuration of meta-parameters
and data is characterized by a distinct representation m, we can consider the relation
of each pair m, e as a function. Furthermore, we can collect a dataset D = {ml, el}Ll=1

of L = M × N performance evaluations for models trained under M meta-parameter
configurations and evaluated on N test data points. These data can then be used as
training data in the model-based approach presented in Section 3.3.3.

3.3. Descriptive and Model-Based Reliability Tests

Before diving into the details of model-based reliability testing, we will discuss common
descriptive statistics that have been proposed as reliability metrics. The most well-known
such metrics are agreement coefficients such as Scott’s π [Scott, 1955], Cohen’s κ [Cohen,
1960], or Krippendorff’s α [Krippendorff, 2004] that are commonly used to measure
reliability in data annotation processes in NLP and data science. Furthermore, we will
look at applications of common randomization-based techniques like the bootstrap [Efron
and Tibshirani, 1993] to develop estimates of reliability of model prediction processes.

3.3.1. Agreement Coefficients for Data Annotation

Krippendorff’s α coefficient is a widely used agreement measure in NLP, at least since
the survey paper of Artstein and Poesio [2008]. Its attractiveness is due to the fact
that it is based on the simple concept of percent agreement that is adjusted to include
agreement by chance, similar to Scott’s π [Scott, 1955] or Cohen’s κ [Cohen, 1960], but
it is applicable to multiple raters and to all standard scales of measurements (nominal,
ordinal, interval, and ratio variables). The measure is also easily computable from
experimental data by collecting relative count statistics instead of optimizing a machine
learning model. This convenience is due to a fixed choice of a model for computing
chance agreement, done by sampling without replacement from marginal distributions
averaged over raters. As we will see, this model assigns maximum randomness to chance
agreement, a counter-intuitive principle that leads to unmotivated radical changes in
value, and even makes the agreement coefficient undefined if no variation in measurement
is encountered.
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Let us consider the computation of α for two raters and nominal predictions, using an
example from Krippendorff [2004] for binary ratings of two raters A and B on 10 items:

1 2 3 4 5 6 7 8 9 10

A 1 1 0 0 0 0 0 0 0 0
B 0 1 1 0 0 1 0 1 0 0

In order to compute the α coefficient, we first need to sum up the number of observed
rating values in a matrix of two raters, while omitting references to the individual raters.
The entries of this matrix are called observed coincidences ock:

0 1

0 o00 o01 n0

1 o10 o11 n1

n0 n1 n

0 1

0 10 4 14
1 4 2 6

14 6 20

Second, in order to represent what could happen by chance, we need to calculate expected
coincidences eck. These are calculated by randomly sampling without replacement from
the marginals, averaged across raters. This random sampling process can be illustrated
by the following simple urn model. Assume we write each rating of the two raters on a
ball and put it in an urn. Then we draw two balls from the urn without replacing the
first one. For our example, expected coincidences are computed as follows:

0 1

0 e00 e01 n0

1 e10 e11 n1

n0 n1 n

0 1

0 9.6 4.4 14
1 4.4 1.6 6

14 6 20

The expected coincidence e00 of chance agreement between raters A and B on two 0s is
calculated by letting the first rater draw a 0 in 14 out of 20 cases, and letting the second
rater draw a 0 in 14− 1 out of 20− 1 cases. By multiplying these two probabilities by the
total number of 20, we get the expected frequency of 9.6 pairs of two 0s. The remaining
expected coincidences are computed accordingly, as shown below:

e00 =
n0

n
· n0 − 1

n− 1
· n =

14

20
· 13

19
· 20 = 9.6

e11 =
n1

n
· n1 − 1

n− 1
· n =

6

20
· 5

19
· 20 = 1.6

e01 =
n0

n
· n1

n− 1
· n =

14

20
· 6

19
· 20 = 4.4

e10 =
n1

n
· n0

n− 1
· n = e01

From these coincidence tables, the α coefficient is computed as follows:
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α =
observed agreement - chance agreement

n− chance agreement

= 1− observed disagreement

expected disagreement

= 1− o01 + o10

e01 + e10

= 1− o01

e01

.

For the example above, this yields α = 1− 4
4.421

= 0.095. The idea of α as a measure
of chance-corrected agreement is motivated by the values at the end of the range. That
is, an α value of 0, indicating the absence of reliability, is obtained in the case where
observed and expected disagreement are matters of pure chance and thus equal. An α
value of 1, indicating perfect reliability, is obtained in the case where there is no observed
disagreement. In our example, α is relatively low at barely 10%, while the uncorrected
observed agreement — the percent of cases of agreement out of all analyzed cases — is
at 60%. The explanation for this discrepancy lies in the fact that the assumed model of
chance agreement attributes 56% of agreement to chance, as can be seen by calculating
(9.6/20) + (1.6/20) = 56%.

Note that the definition of α given above does not guarantee α ∈ [0, 1]. For example,
α will be negative for the following table of ratings:

1 2 3 4 5 6 7 8

A 0 0 0 0 0 0 1 0
B 0 0 0 0 0 0 0 1

First, we note that uncorrected percent agreement is at 6/8 = 75%. The matrices of
observed and expected coincidences are as follows:

0 1

0 12 2 14
1 2 0 2

14 2 16

0 1

0 12.13 1.87 14
1 1.87 0.13 2

14 2 16

The calculation of expected disagreement is again based on the value e01 = e10:

e00 = (14/16)((14− 1)/(16− 1))16 = 12.13
e11 = (2/16)((2− 1)/(16− 1))16 = 0.13
e01 = (14/16)(2/(16− 1))16 = 1.87

We note that the α value is negative since α = 1− 2
1.87

= −0.07. The explanation lies again
in the computation of chance agreement which amounts to (12.13/16)+(0.13/16) = 76.6%.
This means that all of the observed agreement (75%), and more, is attributed to chance.
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Unfortunately, even if one agrees with the principle of maximum randomness, the
stipulation of chance agreement by a random sampling model has further ramifications.
While values of α at the ends of the range were supposed to motivate the measure,
extreme values can also be obtained by nonsensical abnormalities, defeating a clear
interpretation of the measure. Consider the following table of binary ratings of two raters
A and B on our 10 items:

1 2 3 4 5 6 7 8

A 0 0 0 0 0 0 0 1
B 0 0 0 0 0 0 0 1

The uncorrected percent agreement amounts to 100%, and α reaches a maximum due
to no observed disagreement: α = 1− 0

e01
= 1. If this result is desired, consider a tiny

change in the table that throws a wrench in the works:

1 2 3 4 5 6 7 8

A 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 1

A change of one rating by one rater renders observed and expected coincidences equal:

0 1

0 14 1 15
1 1 0 1

15 1 16

e00 = (15/16)((15− 1)/(16− 1))16 = 14
e11 = (1/16)((1− 1)/(16− 1))16 = 0
e01 = (15/16)(1/(16− 1))16 = 1

This yields α = 1 − 1
1

= 0, although the uncorrected percent agreement is still at
7/8 = 88%. Consider another tiny change in the table, yielding zero variation:

1 2 3 4 5 6 7 8

A 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0

Now α = 1 − 0
0

is technically undefined. Nevertheless, Krippendorff [2004] arbitrarily
defines it to be 0 in this case, while the uncorrected percent agreement is 100%.

Discussion. To summarize, chance-corrected agreement measures like Scott’s π, Cohen’s
κ, or Krippendorff’s α can be written in the following form:

observed agreement - chance agreement

n− chance agreement
.

All measures stipulate a hypothetical model for chance agreement, where the central
differences lie in choices such as sampling with replacement (Scott’s π and Cohen’s κ) or
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without replacement (Krippendorff’s α) from distributions for individual raters (Cohen’s
κ) or for the observed ratings averaged over raters (Scott’s π and Krippendorff’s α).

A crucial similarity between the measures is the fact that the above described counter-
intuitive principle of maximum randomness, and the resulting abnormalities, apply
to all chance-corrected agreement metrics in a similar way.1 Furthermore, all listed
shortcomings apply to all scales.

Arguably, the main shortcoming common to π, κ, and α is the fact that these measures
are descriptive statistics that do not permit to draw conclusions that generalize beyond
concrete raters and concrete data points examined in a concrete experiment. That is,
agreement measures do not allow explaining the reason for high or low agreement by
general properties of raters or data, or by interactions between raters and data. However,
a useful reliability measure should provide the possibility to understand lacking agreement
in terms of properties of raters and data.

3.3.2. Bootstrap Confidence Intervals for Model Evaluation

Inference beyond concrete prediction experiments is indispensable if reliability of model
prediction is to be measured. In contrast to data annotation, the interest is not in the
reliability of human annotations which are used to generate a fixed and static dataset,
but in the reliability of predictions of a machine learning model that is supposed to
be used over and over, not just in the one experiment in question. Thus, even if the
interval scaled variant of Krippendorff’s α would, in principle, be applicable to measure
reliability of model prediction processes, it does not make sense to estimate a single
number indicating the reliability of a machine learning prediction for a given set of tested
meta-parameters, without generalizing across the concrete meta-parameter settings and
data that were used in a particular experiment.

In the machine learning community, the problem of reliability of model prediction has
been addressed by computing confidence intervals for performance evaluation metrics
computed on test data. In the following, we will take a closer look at the approaches of
Henderson et al. [2018], Lucic et al. [2018] who propose bootstrap-inspired resampling
procedures to compute confidence bounds for evaluation scores on test data. The approach
advocated in Lucic et al. [2018] aims to capture the variability of an evaluation metric
introduced by a random search over meta-parameters during training by calculating a
confidence interval for the expected maximum performance under a computational budget.
Henderson et al. [2018] use bootstrap confidence intervals to compare the performance
differences due to different meta-parameter choices in a reinforcement learning setting.
The details of the implemented algorithms to construct bootstrap confidence sets vary
from study to study. In the following, we will briefly summarize the central concepts of
confidence intervals and bootstrap techniques, and sketch an algorithm to apply these
ideas to construct confidence intervals for evaluation metrics under a computational
budget.

1See Zhao et al. [2013] for an exhaustive list of paradoxes and abnormalities of chance-corrected
agreements measures like π, κ and α.
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The concept of a confidence interval can be defined following Shao [2003] as follows.

Definition 3.1.
(Confidence Interval). Let P denote a family of distributions and θ ∈ R be an unknown
parameter of P ∈ P. Further, let α ∈ (0, 1) and Y = (Y1, Y2, Y3, ..., Yn) be a random
sample generated from the random process described by P . Then the estimated interval
[θ̂l(Y ), θ̂u(Y )] is called a confidence interval for θ at confidence level 1 − α if ∀P ∈ P
holds

P (θ̂l(Y ) ≤ θ ≤ θ̂u(Y )) ≥ 1− α. (3.1)

Formally, a confidence interval is a function of the randomly sampled data Y from
which estimators of the lower bound θ̂l(Y ) and the upper bound θ̂u(Y ) need to be
constructed. This construction needs to be done in a way such that the true parameter
θ is covered by the interval by a fraction of at least (1 − α) of all possible samples.
The most prominent example of a confidence interval is the case of independent and
identically distributed Gaussian data with unknown mean. For this case, the bound
estimators can be constructed analytically, yielding the well-known formula for a 95%
confidence interval of the population mean µ, where x̄ is the sample mean and σx̄ denotes
the standard error:

x̄− 1.96σx̄ ≤ µ ≤ x̄+ 1.96σx̄. (3.2)

This can be interpreted by a statement that at a 95% confidence level, 95% of intervals
constructed in the same way on numerous samples will cover the population mean µ
within an interval that is 2× 1.96 = 3.92 standard error units wide, centered around the
sample mean.2

In the case that the family P can not be specified for an application, confidence intervals
can be constructed via nonparametric3 bootstrap sampling distributions. A simple
approach is the so called standard method, which constructs bootstrapped confidence
intervals by plugging bootstrap estimates of σx̄ into Equation (3.2).4

A use case of special interest to the machine learning community is the calculation of
confidence intervals for the maximum out-of-sample performance of an evaluation metric

2A realized confidence interval must not be interpreted in a probabilistic fashion: Once a sample is
drawn and the confidence bounds are determined, the resulting interval either includes θ or not, but all
involved quantities are non-random: θ̂l(Y ) and θ̂u(Y ) have been observed, and θ is an unknown, but
non-random quantity. The (1− α) probability relates to the confidence of the estimation procedure,
not to a specific calculated interval.

3The main principle of the nonparametric bootstrap is the substitution of the unknown data distribution
by the empirical distribution obtained from the i.i.d data sample. Generating data from this
distribution is equivalent to drawing with replacement from the original sample. This method is
especially effective for large sample sizes.

4A method to construct a bootstrap confidence interval with better coverage of the true parameter is the
so-called percentile method [Cohen, 1995, Efron and Tibshirani, 1993]. In general, the construction of
bootstrap confidence intervals is a somewhat delicate problem for which no general conclusive method
has been found yet. Improved methods and an illustrative discussion of this topic are presented in
Efron and Hastie [2016].
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under a given computational budget. The variation that is to be quantified in these
applications is variance due to meta-parameter configurations in model training that
significantly impacts the maximum performance achievable on a given test set. Let pm
denote a model trained under a meta-parameter configuration m, where M is the size of
all meta-parameter configurations, and B ≤M is the computational budget that restricts
the number of meta-parameter search trials. Inspired by the ideas presented in Dodge
et al. [2019], Henderson et al. [2018], Lucic et al. [2018], Tang et al. [2020], a somewhat
unconventional bootstrap-like procedure can be defined by resampling performance
evaluation scores in order to compute a confidence interval for an evaluation metric under
a computational budget:5

Algorithm 3.1 (Confidence Interval for Evaluation Metric under Com-
putational Budget).

1. Generate M meta-parameter configurations for considered model
class.

2. For each m = 1, . . . ,M : Train model pm and calculate the per-
formance evaluation score um = u(pm).

3. For each B ≤M : Construct a bootstrap distribution by K times
drawing B random samples with replacement from {um : m =
1, . . . ,M}. For each sample select the maximum performance
score.

4. Calculate the mean and the standard deviation of this distribution.
In order to construct a confidence interval plug both estimates
into Equation (3.2).

The use of confidence interval for measuring reliability of model prediction performance
is two-fold: First, the confidence interval can be used to directly signify error bars that
visualize the confidence bounds on the mean value in a plot. For example, Figure 3.1
shows the mean values as dots and 95% confidence intervals as vertical bars for the
means of the evaluation metrics F1-score, precision, and recall for computational budgets
(number of visited meta-parameter configurations) to train meta-parameter variants of
Generative Adversarial Networks (GANs) [Lucic et al., 2018]. Confidence bounds can then
be used to assess the reliability of an evaluation under different meta-parameter settings.
The rationale is that at the same level of confidence, smaller confidence bounds indicate
higher reliability, thus the maximum performance score obtained by the meta-parameter
search is more likely to be repeatable.

Second, a bootstrap confidence interval can be used to perform a conservative signif-

5Obviously, in this setup the probability to sample the best performing model p∗m is non-decreasing
with B. Furthermore, note that the following algorithm might give an improper picture if the
meta-parameter space is unbounded. A proper choice of B is thus a non-trivial problem.
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Figure 3.1.: Mean and 95% confidence intervals for F1-score, precision, recall of GANs
for different computational budgets. Graphics from Lucic et al. [2018].

icance test6 by comparing confidence intervals. Given two mean evaluation scores of
two competing systems and the confidence intervals about these means, one can prove
that if the confidence intervals do not overlap — the upper bound of one is below the
lower bound of the other — then the means will be significantly different [DeGroot and
Schervish, 2012].

Discussion. Bootstrap techniques are popular in NLP and data science since they can
be applied to compute confidence intervals for complicated nonlinear evaluation metrics
such as F1-score [Manning et al., 2008], BLEU [Papineni et al., 2002], or ROUGE [Lin and
Hovy, 2003], used for classification, machine translation, or summarization, respectively.
The often cited reason for the flexibility of the bootstrap is the fact that it does not
make any assumptions about the underlying population distribution except that the
original sample is representative of the population [Cohen, 1995]. However, in order to
guarantee correctness of a bootstrap confidence interval, a normality assumption on the
sampling distribution of the evaluation metric has to be made, or else the evaluation
metric u has satisfy the condition of the existence of a monotone transformation φ̂ = g(u)
such that the sampling distribution of φ̂ is normal. Efron and Tibshirani [1993] list a
few normalizing transformations whose existence guarantee correctness of the bootstrap
confidence interval, in the sense that the confidence bounds are the same when applying
the bootstrap technique to the test statistic before and after transformation. The
existence of such correcting transformations is usually not considered when applying
bootstrap techniques to complex test statistics.

Another potential problem of bootstrap techniques is a potential failure of bootstrap
consistency [Canty et al., 2006]. This can happen if the test set from which bootstrap
samples are drawn is not representative of the population, leading to a poor approximation
of the the cumulative population distribution. Another possible reason for inconsistency

6Conservative significance tests are characterized by the fact that the true probability of incorrectly
rejecting the null hypothesis is never greater than the nominal significance level, i.e., the test has a
low Type I error, but also low power. More information on statistical significance testing is found in
Chapter 4 of this book.
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of the bootstrap is a situation where the parameter to be estimated is on the boundary
of the parameter space [Andrews, 2000, Bickel and Freedman, 1981]. This happens in
bootstrap-inspired and related resampling procedures that compute expected maximum
performance under a given budget [Dodge et al., 2019, Lucic et al., 2018], since the true
parameter will be poorly covered by the constructed confidence interval of the expected
maximum.

An alternative to bootstrap methods is the use of cross-validation techniques to compute
confidence bounds on expected performance evaluation scores, taking into account the
variability in data samples. For example, Dietterich [1998] proposes 5 iterations of 2-fold
cross-validation, while Nadeau and Bengio [1999] propose cross-validation runs on several
half-splits of the data separately, in order to obtain conservative estimates of the standard
error to be used to construct standard confidence bounds. These methods can become
quite computation intensive since they involve several runs of training and evaluation
on the obtained data splits. Furthermore, as shown by Bengio and Grandvalet [2004],
there is no unbiased estimator for the variance of cross-validation because of correlations
among the evaluation scores for each data split. This can lead to underestimates of
variance which in turn leads to narrow standard confidence intervals with coverage
below the nominal desired level. Only recently Bates et al. [2021] introduced a nested
cross-validation scheme to estimate standard errors more accurately, leading to confidence
intervals with approximately correct coverage.

Lastly, and most importantly, neither expected maximum evaluation scores nor error
bars based on confidence intervals tell us what we wish to know most urgently when
reliability of model prediction is in question, namely the reasons for lacking reliability.
What a modeler wants to obtain from a reliability analysis is a hint at which meta-
parameters have the most influence on variations in evaluation scores, and how meta-
parameter settings interact with properties of test data. In order to answer these questions,
model-based approaches to reliability, as described in the next section, are needed.

3.3.3. Model-based Reliability Testing

In classical psychological measurement theory [Lord and Novick, 1968], an undifferenti-
ated measurement error accompanies every experimental measurement. More recent work
in psychometrics liberates classical theory by employing variance component analysis to
untangle multiple sources of variation that contribute to the variability in measurement
[Brennan, 2001]. For performance evaluation in data annotation, variance decomposition
means decomposing the total variance into factors corresponding to measurement condi-
tions such as raters, sentences, or interactions between raters and sentences. The same
idea can be transferred to performance evaluation in model prediction. Here one could
select as factors of variability measurement conditions such as meta-parameter settings
of machine learning models, properties of test sentences, or interactions between these
factors.

In the following, we will introduce the central concepts of variance component analysis
[Searle et al., 1992], and adapt these ideas to the fields of NLP and data science. We
will take a model-based approach to estimate variance components, based on random
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effects of linear mixed effects models (LMEMs) [McCulloch and Searle, 2001]. Our main
goal will be to use variance components to define a reliability coefficient that assesses the
reliability of data annotation or model prediction performance by the amount of variance
that is attributable to objects of measurement in relation to total variance.

Variance Component Analysis

Let us consider performance evaluation in interactive machine translation as an example
for reliability studies [Bentivogli et al., 2016, Green et al., 2014, Karimova et al., 2018,
Kreutzer et al., 2020, Simianer et al., 2016]. The response variable Ysr in such an
experiment is an evaluation score measuring human annotation effort, e.g., human
Translation Edit Rate [Snover et al., 2006]. A tautological decomposition shows that it
can be modeled as consisting of four components:

Ysr = µ+ (µs − µ) + (µr − µ) + (Ysr − µs − µr + µ). (3.3)

The components are the grand mean µ of the observed evaluation score across all raters
r and sentences s; the deviation (µr − µ) of the mean for each individual rater µr from
the grand mean µ; the deviation (µs − µ) of the mean for each sentence µs from the
grand mean µ; and the residual error, reflecting the deviation of the observed score Ysr
from what would be expected given the first three terms. Except for µ, each of the
components of the observed score varies from one rater to another, from one sentence to
another, and from one rater-sentence combination to another. Since these components
are uncorrelated with each other, the total variance σ2(Ysr − µ) can be decomposed into
the following variance components :

σ2(Ysr − µ) = σ2
s + σ2

r + σ2
residual, (3.4)

where σ2
s and σ2

r denote the variance due to sentences and raters, and σ2
residual denotes

the residual variance component including the variance due to interaction of s and r.
In the psychometric approach to reliability of Brennan [2001], the conditions of

measurement that contribute to variance in the measurement besides the objects of
interest are called facets of measurement. In the example above, the objects of interest
in our measurement procedure are the sentences. They are the essential conditions of
measurement. The only facet of measurement in this example are the raters, while the
objects of interest are not usually called a facet. An experiment using this so-called
one-facet fully crossed design would randomly select a finite subset of sentences and
raters and observe the scores for all possible combinations. Multi-facet designs allows
modeling interaction effects explicitly. For example, adding a facet for instantiations
i of repeated annotations by the same raters on the same sentences would lead to the
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following two-facet fully crossed design:

Ysri = µ+ (µs − µ) + (µr − µ) + (µi − µ) (3.5)

+ (µsr − µs − µr + µ)

+ (µsi − µs − µi + µ)

+ (µri − µr − µi + µ)

+ (Ysri − µsr − µsi − µri + µr + µs + µi − µ),

and the following variance components:

σ2(Ysri − µ) = σ2
s + σ2

r + σ2
i + σ2

sr + σ2
si + σ2

ri + σ2
residual. (3.6)

The facets of measurement in this design include raters r, instantiations i, and facets for
interactions sr, si, and ri, with objects of measurements being sentences s.

Estimation of the variance components has traditionally been done by so-called ANOVA
estimators consisting of expected mean square equations. These date back to Fisher
[1925] and are discussed extensively in Brennan [2001]. A more flexible alternative is
to model variance components as random effects in LMEMs, as will be described in the
next section.

Linear Mixed Effects Models

In the notation presented in Appendix A.2, for a given dataset of N input-output pairs
{(xn, yn)}Nn=1, the general form of an LMEM is as follows:

Y = Xβ + Zb + ε, (3.7)

where X and Z are known design matrices that relate a vector of fixed effects β, a
random effects vector b, and an N -dimensional vector of residual errors ε to N stacked
response variables Y. While fixed effects can be observed exhaustively and are modeled
as parameters of a standard linear model, random effects are modeled as normally
distributed random variables, and corresponding observations are treated as random
samples from a larger population. Similar to the random error, random effects have a
normal distribution with zero means

b ∼ N (0, ψθ), (3.8)

ε ∼ N (0,Λθ), (3.9)

where ψθ and Λθ are variance-covariance matrices parameterized by θ.
How do the variance components or facets described above relate to LMEMs? Following

Jiang [2018], each component νf = µf − µ denoting a deviation from the mean for a
facet f , is simply modeled as a component of the random effects vector b, and each
corresponding variance component σ2

f is modeled as an entry of the diagonal variance-
covariance matrix ψθ. In the notation of Section 3.2, the facets encoded in the random
effects vector correspond to components of the meta-feature vector m, and response
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variables Y correspond to the evaluation scores e, yielding a performance evaluation
dataset D = {ml, el}Ll=1 of L = M ×N performance evaluations for M meta-parameter
configurations evaluated on N test data points, to train an LMEM. In the following,
we will simplify the notation by omitting subscripts for facets when specifying response
variables Y , and we will denote all facet-specific deviations by νf .

One of the advantages of using LMEMs to estimate variance components is that the
same model structure can be used for nested experimental designs, i.e., for designs that
are special cases of the fully crossed design.7 The price for this flexibility is that although
LMEMs look like a linear model, the linear combination of fixed effect predictor variables
and normally distributed random components yields a nonlinear objective function
with an elaborate estimation methodology. Crucially, while fixed effect parameters
are optimized directly, random effects are predicted from a normal distribution whose
variance-covariance matrix is estimated. This leads to the possibility of using LMEMs
without any fixed effects to directly estimate random effects with the sole purpose
of variance decomposition in reliability studies. We will use such random-effects-only
LMEMs extensively in our experiments. For details on modeling and parameter estimation
for LMEMs we refer the reader to Appendix A.2 and to further literature [Demidenko,
2013, McCulloch and Searle, 2001, Pinheiro and Bates, 2000, West et al., 2007, Wood,
2017].

Reliability Coefficients

The final ingredient of a model-based approach to reliability is the definition of a coefficient
that relates variance components to each other, instead of inspecting them in isolation.
The key concept is the so-called intra-class correlation coefficient (ICC), dating back to
Fisher [1925]. A fundamental interpretation of the ICC is as a measure of the proportion
of variance that is attributable to the objects of measurement. The name of the coefficient
is derived from the goal of measuring how strongly objects in the same class are grouped
together in a measurement. The coefficient is computed as the ratio of the variance
between objects of interest σ2

B to the total variance σ2
total. The latter includes variance

within objects of interest σ2
W , or simply undifferentiated residual variance σ2

ε :

ICC =
σ2
B

σ2
total

=
σ2
B

σ2
B + σ2

W

=
σ2
B

σ2
B + σ2

ε

. (3.10)

7In the world of ANOVA, differences in design such as each measurement object being rated by a
different set of raters instead of by all raters meant that a one-way instead of a two-way ANOVA
estimator had to be used, while in LMEM estimation this results in a missing data situation that is
handled well by explicit estimation of the random effects variance-covariance matrix. A discussion of
further experimental designs is beyond the scope of this book. We refer the reader to Brennan [2001]
for various nested designs useful in reliability studies, and to McGraw and Wong [1996], Shrout
and Fleiss [1979] for earlier work on the same topic. Other advantages of LMEMs over ANOVA
estimators include the ability to handle multiple random effects, each with its own variance matrix
or with its own random slope. See Baayen et al. [2008], Barr et al. [2013], Bates et al. [2015] for
further discussions on the advantages of LMEMs over mixed-model ANOVA estimators.
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In our example of data annotation in interactive machine translation, the objects of
measurement are test sentences. An annotation can be considered reliable if most of
the variance is explained by variance between sentences and not by variance within a
sentence, such as variance caused by inconsistencies of human annotators or by residual
variance due to unspecified facets of the measurement procedure. That is, variance
between objects of measurement, here sentences, is considered substantial variance and
should outweigh all other nonsubstantial variance.

In order to quantify the components σ2
B and σ2

W = σ2
ε , we compute the variance due

to the objects of interest and decompose the undifferentiated residual error into variance
components for various facets. The key idea of Brennan’s [2001] approach is to first
estimate variance components from initial experimental observations and then to use
these estimates to find an optimal measurement procedure for final use.8

Let us consider the two-facet fully crossed design with the objects of interest being
sentences s, and measurement facets for rater r and instantiation i. Furthermore, let
nr denote the number of raters, and ni the number of instantiations. Brennan [2001]
interprets total variance as the variance between objects of interest, here σ2

s , plus
the absolute error variance σ2

∆ that includes variance components for all facets and
interactions, except σ2

s :

σ2
∆ =

σ2
r

nr
+
σ2
i

ni
+
σ2
sr

nr
+
σ2
si

ni
+

σ2
ri

nrni
+
σ2
residual

nrni
. (3.11)

Brennan [2001] then defines an absolute reliability coefficient Φ9 that relates the variance
between objects of interest σ2

s to the total variance:

Φ =
σ2
s

σ2
s + σ2

∆

. (3.12)

Our notion of reliability coefficient will be a generalized version of an absolute reliability
coefficient, denoted by ϕ. It includes variance components for all random effects of a
model except σ2

s in the error variance term σ2
∆, however, the coefficient is more flexible

since it does not require to include interaction effects for all facets.

8Brennan [2001] calls the first a generalization study (or G-study) associated with an universe of
admissible observations, and the second a decision study (or D-study) associated with a universe
of generalization. We will not use this terminology in order to avoid confusion with the use of the
terms ”generalization” and ”decision” in machine learning.

9Brennan [2001] calls this coefficient the ”index of dependability”. We will not use this naming in
the following. He also introduces a relative reliability coefficient that is based on a relative error

variance σ2
δ =

σ2
sr

nr
+
σ2
si

ni
+
σ2
residual

nrni
that only sums up variance components interacting with the items

of interest. Brennan [2001] denotes this coefficient by Eρ2 and gives it the name of a ”generalizability
coefficient”. The relative reliability coefficient focuses on the stability of the relative ordering of
objects of interest, while the absolute reliability coefficient focuses on the homogeneity of absolute
performance score for objects of interest across measurement instances, independent of performance
scores for other objects of interest. In the experiments presented in this chapter we will focus on the
absolute reliability coefficient.

63



Definition 3.2 (Reliability Coefficient).
Assume facets f1, f2, . . . and selected interactions sf1, sf2, f1f2, . . . , with
sample sizes nf1 , nf2 , . . .. Then the reliability coefficient ϕ is computed
by the ratio of substantial variance σ2

s to the total variance, i.e., to
itself and the error variance σ2

∆:

ϕ =
σ2
s

σ2
s + σ2

∆

,

where

σ2
∆ =

σ2
f1

nf1
+
σ2
f2

nf2
+ . . .+

σ2
sf1

nf1
+
σ2
sf2

nf2
+ . . .+

σ2
f1f2

nf1nf2
+ · · ·+ σ2

residual

nf1nf2 . . .
.

In the following, we will illustrate the reliability coefficient on examples from data
annotation and model prediction. In the first case, objects of measurement are sentences
to be annotated, and measurement scores indicate human annotation effort. Facets of
measurement are human raters, and repeated instantiations of measurement of the same
sentence by the same annotator. In the second case, objects of measurement are test
sentences to be translated, and measurement scores are automatic evaluation metrics
of model outputs against gold standard references. Facets of measurement are meta-
parameters of machine translation models, properties of test sentences, and interactions
between these factors. A further example for the second case is model prediction of SOFA
scores where objects of measurement consist of clinical measurements taken in a time
series, and measurement scores consist directly of the scores predicted by the model.

Based on these examples and the reliability coefficient specified in Definition 3.2, we
can give an operational definition of the concept of reliability as follows:

Definition 3.3 (Reliability).
A performance evaluation of a prediction in data annotation or machine
learning is reliable across replicated measurements if the amount of
substantial variance outweighs the total error variance at a sufficient
ratio.

Clearly, Definition 3.3 relies on the variance components of an LMEM that has been
fitted to particular dataset D = {ml, el}Ll=1 of performance evaluations, and it leaves a
set of decisions open to the user. One is, for example, the choice of the threshold above
which the ratio is considered to be sufficient. A threshold of 80% is used, for example,
by Jiang [2018] as a criterion to determine the reliability of a measurement according the
reliability coefficient. Koo and Li [2016] discuss the interpretation of values below and
above this threshold.
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Figure 3.2.: Sentence-wise quality judgment score computed as ratio of marked or edited
words per sentence, for 3 rating instantiations of 5 sentences by each of 10
raters.

Reliability of Data Annotation Performance

In applications of this coefficient to measure reliability, it is reasonable to start from a
fully crossed initial experiment design for given facets, compute estimates for the variance
components, and then conduct a hypothetical study to extend the design by varying the
sample sizes for facets until a satisfactory coefficient value is obtained.
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Let us use the experiments on interactive machine translation by Kreutzer et al. [2020]
for an exemplary study of reliability of data annotation performance. The goal of this
study was to improve the performance of a pre-trained neural machine translation system
by using human translation quality judgments as supervision signals in fine-tuning. They
investigated two modes of human feedback. In the first mode, called “Marking”, human
raters mark erroneous words in the machine translation output by using an annotation
interface to highlight them. In the second mode, termed ”Post Edit”, human raters
correct translations by deleting, inserting, and replacing words or parts of words. For
reasons of efficiency and cost, the data annotation for the subsequent fine-tuning process
was designed such that every document was annotated by a different user, and no user
saw the same document twice. However, for each annotation mode, a set of example
sentences was held out to measure reliability of data annotation. That is, for each mode,
each of five sentences was annotated three times by each of ten human raters. We will
study the reliability of user feedback on these data.

A first impression of the reliability of data annotation performance in interactive
machine translation can be given by inspecting Figure 3.2. We see that sentences
consistently receive a higher quality score for ”Post Edit” annotations than for ”Marking”
annotations. We also see that the assigned scores vary more for ”Post Edit” than for
”Marking” annotations. Let us now conduct a model-based reliability study for these data.
The experiment design is a two-facet fully crossed design with a variance component for
the objects of measurement, i.e., sentences s, and facets for raters r, instantiations i, and
interactions sr, si, and ri. The response variable Y that is measured is a reduction of
markings and post-edits to sentence-wise quality judgments that compute the ratio of
marked or edited words per sentence, respectively [Kreutzer et al., 2020]. This yields the
following model

Y = µ+ νs + νr + νi + νsr + νsi + νri + εresidual, (3.13)

where µ is the grand mean. Each facet f is associated with a factor νf = µf − µ that
indicates the deviation of its mean from the related grand mean and is estimated by
encoding variance components as random effects of an LMEM.

The estimates of variance components for annotations in ”Marking” mode can be
seen in Table 3.1. The result corresponds to a computation of the coefficient ϕ and
shows that only 12% of the variance in this experiment can be explained by variance
σ2
s between objects of measurement. Thus 88% is attributed to arbitrary particularities

of the measurement. Obviously, there is no systematic difference between replicated
measurements (the effects containing the instantiation facet have variance components
equal to zero). We also see that a large fraction σ2

r = 14.2% of measurement variation can
be attributed to different marking styles of raters, but this style differences are not uniform
across sentences, as seen by σ2

rs = 16.1%. Thus, a large amount of non-attributable
variance σ2

residual = 57.6% remains.
The variance component analysis for the ”Post Edit” mode yields the results shown

in Table 3.2. A computation of ϕ shows that by far the largest portion of variance can
be attributed to differences in our object of measurement since σ2

s = 60.4%. We also
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Table 3.1.: Variance components in translation marking experiment.

Variance component v Variance σ2
v Percent

sentence s 0.00304 12
rater r 0.00358 14.2
instantiation i 0 0
interaction sr 0.00407 16.1
interaction si 0.00000000000434 0
interaction ri 0 0
residual 0.0145 57.6

Table 3.2.: Variance components in translation post-editing experiment.

Variance component v Variance σ2
v Percent

sentence s 0.0479 60.4
rater r 0.00138 1.7
instantiation i 0 0
interaction sr 0.0187 23.7
interaction si 0 0
interaction ri 0.000622 0.8
residual 0.0106 13.4

see that the non-substantial fraction of variance is mostly composed of two components,
namely σ2

sr = 23.7% and σ2
residual = 13.4%.

Besides just providing insights into the peculiarities of particular facets of a mea-
surement, a decomposition and estimation of variance components is also the basis for
exploratory studies on efficient and reliable experimental designs. Instead of analyzing a
concrete experiment, we are interested in reducing variance by averaging measurements
across several raters and instantiations. Concretely, we reduce the variation attributable
to a facet f by averaging over nf repeated measurements of the same object for different
instances of the facet. We then compute the reliability coefficient to find the best trade-off
between reliability and efficiency.

Figure 3.3 shows the values of the reliability coefficient for measurements of sentence-
wise quality judgments of human ratings under ”Marking” and ”Post Edit” modes,
averaged over ni = 1, .., 5 instantiations and plotted against a number of raters nr =
1, .., 12. This study shows that data annotation in ”Post Edit” mode yields a coefficient
value above 60% for observations of single annotation instances by single raters, while the
reliability coefficient in ”Marking” mode is only at 12%. Averaging over instantiations
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Figure 3.3.: Reliability coefficient ϕ for data annotation performance in ”Marking” or
”Post Edit” mode, generalized to 5 rating instantiations and 12 raters.

and raters shows that about two raters and two instantiations would be sufficient to
reach coefficient values of about 80% in ”Post Edit” mode. In ”Marking” mode, however,
averaging measurements from 3− 5 rating instantiations from 10− 12 raters would be
necessary to exceed the 80% threshold. According to the guidelines of Koo and Li [2016],
values of ϕ between 75% and 90% can be interpreted as good reliability. Depending on
the availability of resources, a satisfying design can be chosen to maximize reliability
under given feasibility restrictions.

Reliability of Model Prediction Performance

Model evaluations in the train-dev-test paradigm usually report a single high score of a
model that has been trained with the largest budget, both in terms of maximal hardware
resources and maximal computational resources for extensive meta-parameter search (see
Dodge et al. [2019], Henderson et al. [2018], Lucic et al. [2018], Strubell et al. [2019], Tang
et al. [2020] for a discussion). Such evaluation procedures are insufficient for drawing
conclusions about the general performance of models, since they do not allow reproducing
model predictions if repeated under differing meta-parameter settings. Fortunately, the
random effects capabilities of LMEMs allow us to estimate the variance induced by
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Table 3.3.: Meta-parameters values used in training neural models for prediction of liver
SOFA score.

Meta-parameter Grid values

batch size 1 4 8 16 32 64
dropout 0 0.05 0.1 0.15 0.2
epochs 1 5 10
hidden number 3 5 7
hidden size max 16 32 64 128 256
learning rate 0.001 0.01 0.1
random seed −7712 6483 20777

particular meta-parameter settings of machine learning models in a general way, across
instantiations of all other meta-parameters. Such a variance component analysis will be
useful to assess the importance of meta-parameters, based on their contribution to overall
variance, and to assess the reliability of a performance evaluation process, based on the
ratio of substantial variance to total variance, including variance due to meta-parameter
settings.

Variance Component Analysis of Meta-Parameter Importance. An established
use-case of variance component analysis in the context of meta-parameter search is the
use of ANOVA-type techniques to assess the importance of meta-parameters [Hutter
et al., 2014, Zimmer et al., 2020]. We show how variance component analysis based on
the random effects of an LMEM can be used for this purpose.

As an example, let us consider a multi-layer perceptron (MLP) that predicts the
liver SOFA score and is evaluated by a summative performance metric, such as mean
accuracy over the test data instances. The neural model architecture is the same as used
in Section 2.4.3 as a teacher model for predicting SOFA scores. The architecture is a
feedforward neural network with an ascending, then descending number of neurons per
layer, and a ReLU activation function [Glorot et al., 2011]. It was trained for regression
using pyTorch’s SGD optimizer on 323,404 measurement points of the ICU data for 620
patients described in Schamoni et al. [2019], and evaluated on a test set of another 80,671
measurement points. For each of the 7 types of meta-parameters of the neural network,
3 − 6 reasonable values were chosen, and a grid of models over all combinations of
chosen values for each meta-parameter was trained and evaluated. The meta-parameters
include architectural parameters for feedforward neural networks [Rumelhart et al., 1986]:
maximal number of neurons in hidden layer (hidden size max), number of hidden layers
(hidden number), values of initial learning rate (learning rate), number of training
examples in each gradient computation (batch size), seed of random number generator
(random seed), number of iterations over training set (epochs), and probability of zeroing
out hidden connections during training (dropout) [Srivastava et al., 2014]. Table 3.3
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Figure 3.4.: Means and standard deviations of mean test set accuracy of neural models
trained for prediction of liver SOFA score.

shows the meta-parameter values used in training and evaluation, yielding a fully crossed
configuration space of 6× 5× 3× 3× 5× 3× 3 = 12,150 models.

In order to assess the variance contribution of each meta-parameter, we train an
LMEM on data points D = {ml, el}Ll=1, consisting of M meta-features vectors m,
each corresponding to a specific meta-parameter configuration of a model, and mean
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Table 3.4.: Variance components from meta-parameter grid search for neural model
prediction of liver SOFA score.

Variance component v Variance σ2
v Percent

residual 0.0000314 61.2
hidden number 0.0000159 31.0
learning rate 0.00000318 6.2
batch size 0.000000517 1.01
hidden size max 0.000000260 0.505
dropout 0.0000000599 0.117
random seed 0.00000000405 0.00788

accuracy evaluation scores e obtained by evaluating a model trained under a specific
meta-parameter setting on the full test set. Thus the number of performance evaluation
data points in this experiment is L = M . The response variable Y in this experiment
is the mean evaluation score e, and each meta-parameter is modeled as random effect
νmeta−parameter of a random-effects-only LMEM. We a consider model with single random
effects without interactions of the following form:

Y = µ+ νhidden size max (3.14)

+ νhidden number

+ νlearning rate

+ νbatch size

+ νrandom seed

+ νepochs

+ νdropout

+ εresidual.

Figure 3.4 shows means and standard deviations of the evaluation score on the test set
for each meta-parameter setting. The interpretation of each random effect as a variance
component is given in Table 3.4. We see that the meta-parameter that induces most of
the variance in model evaluation is the number of hidden layers, amounting to 31% of
the total variance, followed with a wide margin by the learning rate, responsible for 6.2%
of the total variance. All other meta-parameters introduce a negligible variance of 1%
or less into the performance evaluation of the neural model. This result matches the
findings of Zimmer et al. [2020], who also observe the number of layers and the learning
rate to be the two most ”important” meta-parameters of multilayer perceptrons, even
though they were evaluated for different applications with different techniques.
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Reliability Coefficients for Meta-Parameter Grid Search. A usage of variance
component analysis that goes beyond a mere assessment of meta-parameter importance
is a reliability assessment of model predictions under varying meta-parameter settings.
For this purpose, LMEMs can be trained on data consisting of performance evaluation
scores measured separately for items of interest. Based on the variance components
of the trained LMEM, a reliability coefficient can be computed that relates variance
attributable to items of interest to variance due to meta-parameter variation.

A question naturally arises regarding the feasibility of variance component analysis
for large configuration spaces of meta-parameters. As we will see, the standard practice
of a meta-parameter search over an incomplete configuration space, either guided by
the experience of the modeler (see, for example, Jiang et al. [2019]), or by random
search over the configuration space (as suggested by Bergstra and Bengio [2012]), can
provide useful data to compute reliability coefficients. Furthermore, a simple check of
substantial variance can be performed that assesses only the contribution of the objects of
measurement to the total variance. A prerequisite to such a substantial variance check is
the assumption of a partially crossed experimental design where selected meta-parameter
settings are evaluated against the full set of measurement items. This leads to orthogonal
effect estimators for substantial variance components which guarantee that the substantial
variance of objects of measurement will stay constant even if the residual variance is
further decomposed.

Let us formalize these requirements in the framework of variance component analysis
of Searle et al. [1992]. In this framework, independent variables that we called (meta-
)features or facets are interpreted as classifications of data, called factors, and the
individual classes are termed levels of a factor. The extent to which different levels of
a factor affect the dependent variable is called the effect of a level of a factor on the
response. Effect estimators are, for example, maximum likelihood estimates for random
effect parameters of LMEMs. Our interest is in effect estimators for variance components
σ2
s for substantial factors that stay constant for a given experiment, irrespective of

how fine-grained the residual variance is decomposed. This goal can be achieved by
choosing an appropriate experimental design that crosses substantial factors with factors
corresponding to meta-parameters, according to the following definition.

Definition 3.4 (Crossed and Balanced Design).
A factor is called crossed iff all its levels are observed with all combinations of at least
one level all other factors in the experiment. An experimental design is called partially
crossed iff at least one factor is crossed, and fully crossed iff all factors are crossed. An
experimental design is called balanced iff the number of observations is the same for all
factor combinations realized in an experiment.

The special instance of Definition 3.4 that we are interested in is the case of a partial
grid search over meta-parameters where each configuration of meta-parameter values is
evaluated once for all items of interest, yielding a partially crossed and balanced design.
For such a design, we can obtain unique and constant effect estimators for substantial
variance components σ2

s , as expressed in the following proposition.
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Table 3.5.: Variance components for substantial variance check of partial meta-parameter
grid search for circular neural net for liver SOFA prediction.

Variance component v Variance σ2
v Percent

substantial factor s 0.766 98.5
residual 0.0113 1.46

Proposition 3.1 (Orthogonal Effect Estimator.).
Crossed factors in (fully or partially) crossed and balanced designs are uncorrelated to
other factors, and the effect estimators for variance components corresponding to these
factors are unique, irrespective of the variance decomposition of the residual variance.
Such factors and the corresponding effect estimators are called orthogonal.

Proof sketch. Assume that X is a crossed factor in a partially crossed balanced
design with N samples observed in each cell. Without loss of generality, let us denote
its levels lX by 1, 2, . . . , LX and call x̄ = 1

LX
(1 + 2 + . . . + LX) the level mean. Let Y

be another factor considered in the experiment with levels 1, 2, . . . , LY and analogously
defined level mean ȳ. In order to show that X and Y are uncorrelated, we have to show
that

∑LX
l=1

∑N
i=1(lXli − lX)(lYli − lY ) = 0. The fact that the design is balanced allows us to

replace the data means lX and lY by the corresponding level means x̄ and ȳ. Together
with the fact that X is crossed with Y, we obtain the result of zero co-variance:

LX∑
l=1

N∑
i=1

(lXli − lX)(lYli − lY )

= N

LX∑
x=1

LY∑
y=1

(x− x̄)(y − ȳ)

= N

LX∑
x=1

(x− x̄)

LY∑
y=1

(y − ȳ)

= 0.

Effect estimators for orthogonal factors are estimated independent of all other factors,
thus they can be determined uniquely and stay constant irrespective of the presence or
absence of other factors in the total variance decomposition. This holds for ANOVA
sum-of-square estimators as well as for maximum likelihood estimators for LMEMs (see
Searle et al. [1992], Chapter 4). �

Proposition 3.1 allows us to perform a simple check of the proportion of variance
attributable to the objects of measurement, without having to conduct a full variance
decomposition. As a first example, let us apply this check to the multi-layer perceptron
for the prediction of liver SOFA. The neural model in this example is the same as used
in Section 2.4.3 as teacher model for predicting SOFA scores, and as used in the previous
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Table 3.6.: Variance components for substantial variance check of partial meta-parameter
grid search for non-circular neural net for liver SOFA prediction.

Variance component v Variance σ2
v Percent

substantial factor s 0.162 70.5
residual 0.0663 28.8

section to showcase the computation of meta-parameter importance. While the data
for the variance component analysis in the previous section consisted of the summative
evaluation metric of mean accuracy over the full test set, evaluated for 12,150 models,
the data required to compute the reliability coefficient ϕ need to consist of a model score
for each item of measurement. In this experiment, the items of measurement consist of
80,671 data points of clinical measurements that were collected for 620 patients. Since
SOFA score prediction is a regression problem, we can directly use model predictions
for each of these measurement points, computed over a small grid of 3 × 3 × 3 = 27
models for each of three values of the meta-parameters learning rate, hidden number, and
random seed. For a substantial variance check, we can train the following simple model
where response variables Y consist of clinical measurements and substantial factors s
consist of identifiers for measurement points:

Y = µ+ νs + εresidual. (3.15)

A substantial variance check for this simple model amounts to computing the ratio
of substantial variance σ2

s to itself and the undifferentiated residual variance σ2
residual,

corresponding to the reliability coefficient ϕ = σ2
s

σ2
s+σ2

residual
. As shown in Table 3.5, for

the circular model (including bilirubin measurements defining liver SOFA), we obtain a
reliability coefficient of 98.5%. This is an excellent example for how an invalid prediction
can be highly reliable since the inclusion of circular features allows consistent and accurate
predictions even for non-optimal meta-parameter settings. Removing the label-defining
feature in Table 3.6 yields a still considerable coefficient value of 70.5% for a substantial
variance check. According to the guidelines of Koo and Li [2016], this coefficient value tells
us that the variations in the predictions of the neural SOFA score model can be attributed
to test data heterogeneity with moderate reliability. A further variance decomposition
shows that non-substantial variance is incurred for variations of the meta-parameters of
learning rate (0.39%), random seed (0.302%), and hidden number (0.0451%).

Let us next consider the experiments on interactive machine translation by Kreutzer
et al. [2020]. The ultimate goal of this study was to use sentences annotated with human
markings and post-edits as training data to improve the fine-tuning step of a neural
machine translation system. The measurement process in this case consists of evaluating
predictions of the neural machine translation system that has been fine-tuned on the
correct parts of marked or post-edited sentences. The objects of interest thus consist
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Table 3.7.: Meta-parameters values used in basic fine-tuning experiment of neural machine
translation model on human marking data in Kreutzer et al. [2020]. Values
in bold face are used in an extended grid search.

Meta-parameter Grid values

learning rate 0.0001 0.0003 0.0005 0.003
random seed 42 43 44
encoder dropout 0 0.2 0.4 0.6
decoder dropout 0 0.2 0.4 0.6
decoder dropout hidden 0 0.2 0.4 0.6

of 1,043 test sentences10 for which the TER evaluation score [Snover et al., 2006] has
been measured against reference translations. The models used in Kreutzer et al. [2020]
are encoder-decoder recurrent neural networks (RNNs) with attention [Bahdanau et al.,
2015, Luong et al., 2015], 4 bi-directional encoder and 4 decoder layers with 1,024 units
each, and embedding layers of size 512. These models are considerably larger than the
MLP described above to predict SOFA scores, and they are pre-trained on datasets of
over 6 million parallel sentences, and fine-tuned on another 1,042 sentences.

The items of interest in this experiment are the sentences in the test data. Let us apply a
substantial variance check to performance evaluation data of a neural machine translation
model fine-tuned on sentences annotated in ”Marking” mode. These neural model include
the following meta-parameters: Values of initial learning rate (learning rate), seed of
random number generator (random seed), probability of zeroing out hidden connections
during training of encoder (encoder dropout), decoder (decoder dropout), and hidden
layers of the decoder (decoder dropout hidden). Ranges of meta-parameter values are
shown in Table 3.7. In the original experiment of Kreutzer et al. [2020], a partial grid
of 27 models was trained and evaluated. For a substantial variance check, we can train
the simple model (3.15) for response variables Y consisting of sentence-level TER scores,
and substantial factors corresponding to test sentences s. As shown in Table 3.8, we see
that the substantial variance for these experimental data amounts to 82.1% of the total
variance.

For a further decomposition of variance due to meta-parameters, we model each meta-
parameter as single random effect without interactions and train a random-effects-only

10Note that two of the 1,043 test sentences reported in Kreutzer et al. [2020] were duplicates that we
removed in our LMEM experiments.
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Table 3.8.: Variance components for substantial variance check of partial meta-parameter
grid search for basic fine-tuning experiment of neural machine translation
model on human marking data in Kreutzer et al. [2020].

Variance component v Variance σ2
v Percent

sentence s 0.0905 82.1
residual 0.0197 17.9

LMEM of the following form:

Y = µ+ νs (3.16)

+ νlearning rate

+ νrandom seed

+ νencoder dropout

+ νdecoder dropout

+ νdecoder dropout hidden

+ εresidual.

An interpretation of each random effect as a variance component is shown in Table 3.9.
We see that the meta-parameter which induces the largest variance is the learning rate,
which itself contributes less than 1% to the total variance. The variance contributed
by objects of interest is 81.9% of total variance, which is the same as in the substantial
variance check of Table 3.8, modulo numerical errors of the estimator. According to
the 80% threshold of Jiang [2018], this coefficient value tells us that predictions of the
neural network are consistent across the meta-parameter configurations of the partial
grid search. According to the guidelines of Koo and Li [2016], this value of ϕ can be
interpreted as good reliability.

Returning to the question of the feasibility of variance component analysis for large
meta-parameter configuration spaces, we propose the conjecture that a manual search
over a partial meta-parameter grid exhibits higher variance due to meta-parameters than
searching over a full grid. This rule of thumb suggests that human modelers actively
search for the models with highest variation and are not interested in filling the gaps
with models of similar performance to the already tested ones. This conjecture can be
confirmed for our case by training an LMEM on data produced by evaluating a full grid
of 3×3×2×3×3 = 162 models instantiated to all combinations of basic meta-parameter
values given in Table 3.7.

Let us apply a substantial variance on a random-effects-only model (3.15) trained on
the dataset of fully crossed meta-parameter configurations. Proportions of substantial
and residual variance in Table 3.10 are the same, modulo numerical approximation errors
of the estimators, as in the full variance decomposition shown in Table 3.11 for the model
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Table 3.9.: Variance components in partial meta-parameter grid search for basic fine-
tuning experiment of neural machine translation model on human marking
data in Kreutzer et al. [2020].

Variance component v Variance σ2
v Percent

sentence s 0.0905 81.9
residual 0.0189 17.1
learning rate 0.0008 0.72
decoder dropout hidden 0.000145 0.13
encoder dropout 0.000108 0.1
random seed 0.0000133 0.01
decoder dropout 0.0000000000562 0

Table 3.10.: Variance components for substantial variance check of full meta-parameter
grid search for basic fine-tuning experiment of neural machine translation
model on human marking data in Kreutzer et al. [2020].

Variance component v Variance σ2
v Percent

sentence s 0.109 86.0
residual 0.0177 14.0

(3.16). We see that in comparison to Table 3.9, variance components corresponding
to sentences increased marginally from 0.0905 to 0.109, while variance corresponding
to meta-parameters and residual variance decreased. This results in a slightly higher
reliability coefficient ϕ of 85.9%. Comparing this to the value ϕ = 81.9% for the partial
grid search lets us interpret the latter as a conservative reliability estimate that is only
improved if variance is smoothed out by filling in missing points in the grid.

Note that we purposely speak of a ”rule of thumb” since no guarantee can be given
for partial grid searches resulting in high meta-parameter variance. The same effect can
also be obtained by extending the grid to include extreme values. For example, the
basic grid in Table 3.7 can be extended with dropout values of 0, effectively turning
off the regularization effect of dropout, and by adding too large learning rates, possibly
introducing instability in training. A fully crossed configuration space containing all
combinations of meta-parameter values results in 4 × 4 × 4 × 4 × 3 = 768 trained
models. We expect a variance component analysis on this extended grid to result in lower
reliability coefficient values, due to the increased variance of more heterogeneous models
being evaluated. The variance components of random-effects-only LMEM trained on
the extended grid of meta-parameters is shown in Table 3.12. We see that the variance
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Table 3.11.: Variance components in full meta-parameter grid search for basic fine-tuning
experiment of neural machine translation model on human marking data in
Kreutzer et al. [2020].

Variance component v Variance σ2
v Percent

sentence s 0.109 85.9
residual 0.0173 13.7
learning rate 0.000413 0.33
encoder dropout 0.0000978 0.08
decoder dropout 0.00000670 0.01
decoder dropout hidden 0.0000147 0.01
random seed 0.00000166 0

Table 3.12.: Variance components in extended meta-parameter grid search for basic fine-
tuning experiment of neural machine translation model on human marking
data in Kreutzer et al. [2020].

Variance component v Variance σ2
v Percent

sentence s 0.0902 76.8
residual 0.0246 20.9
learning rate 0.00240 2.05
decoder dropout 0.000120 0.1
encoder dropout 0.0000543 0.05
decoder dropout hidden 0.0000314 0.03
random seed 0.00000155 0

corresponding to learning rate and residual variance increase, while substantial variance
is again a bit lower, resulting in a lower reliability coefficient ϕ of 76.8%.

Interactions between Meta-Parameters and Data. Another important use of
LMEMs that goes beyond assessing meta-parameter ”importance” by variance component
analysis is investigating the interaction of meta-parameters and test data characteristics.
Let us again consider the model that is fine-tuned on sentences annotated in ”Marking”
mode but now with the addition of weight assignment for marked and unmarked words as
a meta-parameter. We consider two settings of this meta-parameter, called delta scheme.
The first option is symmetric negative and positive weights (−0.5, 0.5) in the loss function
for marked and unmarked words. The second option is a simpler scheme that ignores
negatively marked words in training by applying weights (0, 1) for marked and unmarked
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Figure 3.5.: Estimated group mean of translation edit rate (TER) for neural machine
translation models trained with meta-parameter weights (−0.5, 0.5) versus
(0, 1) for negative and positive markings.

words, respectively. Our goal here is to assess the importance of the interaction between
one particular meta-parameter setting and sentence length, in order to better understand
evaluation results and to choose an appropriate setting for future applications.

In this experiment, the response variable Y to be modeled is the TER score measured
for each sentence. Sentences are modeled as random effects νs. Furthermore, we model
the two settings of the weighting scheme for markings as fixed effect νd . Source sentence
length of the test data is divided into three bins of 1 − 14, 15 − 55, and > 55 words,
and is modeled as fixed effect νn. Our goal is to analyze interactions νnd between the
weighting scheme and sentence lengths as a fixed interaction effect. The following model

Y = ν + νs + νn + νd + νnd + εresidual, (3.17)

is estimated by encoding fixed and random effects in an LMEM. As can be seen from
Figure 3.5, the choice of the weighting scheme causes a difference in TER evaluation
score of the neural machine translation models for test sentences in the bracket of > 55
words.

Discussion. The basic components of model-based reliability testing discussed in this
chapter date back to Fisher’s [1925] statistical techniques for variance component anal-
ysis and intra-class correlation coefficients. We replace ANOVA methods by modern
LMEMs for modeling and estimation [Wood, 2017] , and use refined analysis techniques
from psychometrics to design optimal measurement procedures [Brennan, 2001]. The
psychometric literature includes a wide variety of further reliability measures which are
too plentiful to be covered here. Standard correlation-based reliability coefficients like
split-half reliability or the Spearman-Brown formula (see Lord and Novick [1968]) or
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Cronbach’s coefficient alpha [Cronbach, 1951] can be reformulated as versions of ICCs
(see Webb et al. [2006]), albeit under variance-restricting conditions that do not seem
applicable to human annotators or to machine learning models. Well-known notions
such as inter- or intra-rater reliability can easily be derived as special cases of ICCs
(see Brennan [2001]). For example, in fully crossed designs including facets for raters r,
instantiations i, and for interactions sr, si, and ri, with objects of measurement being
sentences s, intra-rater reliability is calculated by fixing the rater facet to one rater, and
generalizing over instantiations, without averaging:

ϕintra−rater =
σ2
s + σ2

sr

σ2
s + σ2

sr + σ2
ri + σ2

residual

. (3.18)

In a similar way, inter-rater reliability is obtained by fixing the instantiations to one, and
generalizing over raters, without averaging:

ϕinter−rater =
σ2
s + σ2

si

σ2
s + σ2

si + σ2
sr + σ2

residual

. (3.19)

However, these measures are formulated in the spirit of relative reliability coefficients that
do not provide an added value to the general coefficient ϕ and are harder to interpret. If
the interest is to investigate additional factors like rater accuracy or sentence difficulty
that further influence data annotation performance, Bayesian models of annotation are
recommended [Passonneau and Carpenter, 2014, Paun et al., 2018].

Variance component analysis has been applied to information retrieval models [Ferro
and Silvello, 2016, Robertson and Kanoulas, 2012, Voorhees et al., 2017] and machine
learning models in general [Bergstra and Bengio, 2012, Hutter et al., 2014, Zimmer et al.,
2020]. The former approaches focus on interactions between search queries modeled
as random effects, and retrieval system components modeled as fixed effects, and they
are based on variants of ANOVA for modeling. The latter approaches focus on meta-
parameter importance, without considering interactions between meta-parameter settings
and test data properties. They are based on functional ANOVA [Hutter et al., 2014]
or Gaussian process regression [Bergstra and Bengio, 2012] of the function from meta-
parameters to performance evaluation scores. None of the mentioned approaches take
advantage of the flexibility of LMEMs to model meta-parameter variance by random
effects.

A distinctive feature of our approach is the ICC-based idea of quantifying reliability
by the proportion of variance attributable to the objects of interest. For our applica-
tions to NLP and data science, this requires evaluation metrics that are computed for
each measurement object separately instead of summative evaluation scores as in the
approaches of Hutter et al. [2014] or Bergstra and Bengio [2012]. Furthermore, it requires
that the test data exhibit sufficient heterogeneity. This condition is naturally satisfied
by the heterogeneity of patient data in medical data science where, for example, disease
severity scores are measured for diseased and healthy patients. We believe that these
requirements are also met in several NLP applications. For example, high performance
on heterogeneous test data is a common requirement to assess the generalization ability
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of machine learning models in the area of machine translation [Barrault et al., 2020]. In
this community, sentence-level evaluation metrics are preferred for the interpretability of
the metrics, and to calculate sentence-level correlations with human judgments (see Rei
et al. [2020], Zhang et al. [2020] for recent examples).

3.4. Notes on Practical Usage

The statistical methods presented in this chapter offer a variety of practical applications.
Let us first consider reliability of data annotation performance. The reliability coefficient
ϕ introduced in Definition 3.2 is recommended as replacement for the widely used α
coefficient [Krippendorff, 2004] since it covers all advantages claimed for α (e.g., applica-
bility to multiple raters, to all scales of measurement, and to data with missing values),
without suffering any of its known disadvantages (see the paradoxa and abnormalities
discussed in Section 3.3.1). Furthermore, it goes beyond the pure descriptive nature of α
since it is formulated in a framework of statistical inference. The latter difference also
bears a huge interpretational consequence: While a large α value is meant to indicate
that the concrete annotations for a fixed set of objects obtained from a fixed set of raters
agree higher than expected, a high value of ϕ makes a statement that transcends the
sample at hand: It indicates that the variability in annotations is attributable to object
differences, and not to irrelevant idiosyncrasies of raters or instantiations of annotations.
Last, the reliability coefficient ϕ offers insights into the reasons for (lacking) reliability by
explicit variance components, including raters, instantiations, and interactions between
raters and data. This information can be used in exploratory studies that may suggest,
for example, to average measurements across several raters, or to filter particular raters,
for more reliable and still efficient annotation.

Considering model prediction performance, an important and well-established applica-
tion of the techniques presented in this chapter is the use of variance component analysis
in tandem with meta-parameter optimization [Hutter et al., 2014, Zimmer et al., 2020]. A
variance component analysis of meta-parameters in a performance evaluation experiment
for machine learning models allows an assessment of the importance of meta-parameters
relative to each other, an assessment of variance due to interaction of meta-parameters
and data, and an assessment of the change in variance of a meta-parameters across
different budgets. For example, freezing meta-parameters with a smaller contribution to
total variance, and paying special attention to meta-parameters causing larger variation,
will aid more efficient meta-parameter optimization that makes best use of a given
computational budget. Meta-parameter optimization itself is a separate topic that goes
beyond the scope of this book (see, for example, Habelitz and Keuper [2020]).

A further recommendation is to establish the use of the reliability coefficient ϕ to
assess the reliability of performance evaluation of machine learning models: Reporting
ϕ complementary to reporting the best achieved performance for a machine learning
model on a test set allows relativizing reported high scores by the accrued variance due
to extensive meta-parameter search. Overly large computational requirements to find
best performing system settings will be revealed by a large variance component due to
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extensive meta-parameter searches, and systems yielding nominally lower performance
score might be preferred because of their robustness against meta-parameter variation. A
related problem is that of underspecification in machine learning [D’Amour et al., 2020],
leading to instability and poor model behavior in certain test situations, depending on
choices such as random seeds in training. Here a computation of reliability coefficients
based on variance components allows assessing possible reasons for instability.

An advantage of the presented model-based techniques is the fact that they revolve
around the decomposition of output variance on already existing performance evaluation
scores of models obtained during meta-parameter optimization. The methods are appli-
cable to arbitrary models and arbitrary tasks. For tasks with non-numeric outputs, the
methods can be applied by introducing a numeric evaluation metric (e.g., edit distance
in our machine translation examples) for every predicted label. The substantial variance
check based on Proposition 3.1 allows a simple assessment of the amount of substantial
variance for a given data, without having to conduct a full variance decomposition.
Furthermore, estimation and statistical properties of LMEMs are well understood [Demi-
denko, 2013] and can build on well-established software packages like lme4 [Bates et al.,
2015]. Last, reliability analysis of meta-parameter variation is ideally complemented with
likelihood ratio tests based on nested LMEM models [Pinheiro and Bates, 2000] — this
will be the topic of the next chapter.
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4. Significance

Closely related to the problem of the reliability presented in the previous chapter is
the problem of determining if the difference between multiple performance evaluation
measurements is statistically significant. If the interest is in the statistical significance
of differences between performance evaluation scores of machine learning models, the
discussion of the previous chapter showed that there are two major sources of randomness
that need to be respected: One is the randomness of the test data sample on which
the models are to be compared. The other is the inherent randomness of the machine
learning procedure, exemplified by meta-parameter variations.

Unfortunately, in state-of-the-art research following the train-dev-test paradigm, sys-
tematic uncertainty estimation is a neglected problem [Forde and Paganini, 2019], and
statistical significance testing is often completely ignored. Instead, researchers frequently
waive statistical significance tests in favor of rules of thumb for sufficiently large distances
between observed evaluation scores. The thresholds are based on common wisdom in
respective application areas. For example, in the area of machine translation, result
differences of at least 1− 2 BLEU points [Papineni et al., 2002] seem to be publication
worthy and are often termed ”significant” [Marie et al., 2021].

Since the advent of regular benchmark tests in machine translation, statistical sig-
nificance tests have become more popular. However, there is a confusing multitude
of tests without clear selection criteria, ranging from parametric tests like the t-test1,
nonparametric versions of this tests like the sign test2, to sampling-based tests like the
bootstrap test3, or the approximate randomization test4. Dror et al. [2020] present a
table that matches the most common evaluation metrics in NLP to significance tests
based on whether the evaluation metrics fulfill distributional assumptions required for
parametric tests, or whether nonparametric or sampling-based tests have to be used.

The standard scenario is to compare the single best result, achieved by the model
with the most extensive meta-parameter search, against a baseline system and evaluate
both systems independently on a variety of test sets and language pairs. Besides the
variety of significance tests to compare trained machine learning models on a single
dataset, specialized techniques have been presented for comparing models under multiple
meta-parameter settings, based on their empirical score distributions [Dror et al., 2019], or
by reporting bootstrap confidence intervals on performance evaluation scores [Henderson

1This test is due to ”Student” [1908]. NLP applications are discussed in Dror et al. [2020].
2See Larsen and Marx [2012] for the theory and Collins et al. [2005] for NLP applications.
3This test is due to Efron and Tibshirani [1993] and has been applied to NLP by Graham et al. [2014],

Koehn [2004].
4This test is also known under the name of permutation test, and dates back to Fisher [1935]. It has

been applied to NLP by Clark et al. [2011], Riezler and Maxwell [2005], Yeh [2000].
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et al., 2018, Lucic et al., 2018]. Furthermore, techniques to incorporate variance due to
datasets into the evaluation process have been suggested [Dror et al., 2017, Nadeau and
Bengio, 1999]. However, none of these advanced techniques have yet found noticeable
usage in NLP and data science evaluations. Thus the problem of variance in performance
evaluation measurements originating from different meta-parameter settings and varying
properties of test data is largely ignored in significance testing in NLP and data science
so far.

One of the goals of this chapter is to promote model-based significance testing using
LMEMs, and to revitalize the generalized likelihood ratio test (GLRT) as a hypothesis
test framework that shows its full potential in a model-based setting. GLRTs date
back to the famous Neyman-Pearson theory of statistical testing [Neyman and Pearson,
1933], and provide a general hypothesis testing framework that applies to any evaluation
metric, to multiple meta-parameter settings, and allows analyzing performance differences
conditional on test data properties, something that can not be done with traditional
tests. In the ”nested models” setup [Pinheiro and Bates, 2000], first an LMEM is trained
by maximum likelihood estimation on the performance scores of two machine learning
models, each of which is trained itself under a variety of meta-parameter settings, and
evaluated on a concatenation of different test sets. Then a GLRT assesses the statistical
significance of a fixed ”system” effect of the trained LMEM that differentiates between
the models being compared. This provides a one-stop generalized approach to test the
statistical significance of performance differences between two machine learning models,
where variance in evaluation scores due to meta-parameters and test data characteristics
is incorporated into the LMEM, without having to resort to specialized approaches in
order to deal with multiple predictions and multiple datasets (see Dror et al. [2020],
Chapters 4 and 5, respectively). Furthermore, the use of LMEMs for reliability analysis
and significance testing reveals the intimate relationship between increased reliability of
models and increased power of significance tests.

Another advantage of a model-based approach to significance testing is that it bypasses
the discussion about matching types of significance tests to evaluation metrics in NLP
(see Dror et al. [2020], Chapter 3). A model-based approach fits a wide range of evaluation
metrics since the inference is now based on interpretable parameters of the LMEM (whose
approximate distribution follows from maximum likelihood theory), and not on some
quantity (whose distribution is unknown) that is directly calculated from the performace
evaluation scores.

We begin this chapter with a short discussion of the principles of classical parametric
significance testing and its shortcomings. Next, we address less obvious assumptions
behind sampling-based significance tests that can severely limit the scope of their
applicability. Finally, we discuss the workings of the GLRT and related tests, and
showcase some of its advantages with our running example of interactive machine
translation [Kreutzer et al., 2020].
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4.1. Parametric Significance Tests

The fundamental goal of statistical significance testing is to decide between two mutually
exclusive and exhaustive sets of hypotheses, one called the null hypothesis H0 and
the other called the alternative hypothesis H1, by evidence obtained from observed
random samples. Every statistical test, regardless if it is parametric, nonparametric or
sampling-based, starts by assuming the correctness of the null hypothesis and, based on
this assumption, derives the distribution of a so-called test statistic5 which is used to
distinguish between H0 and H1. The crucial step is to derive the distribution of this
statistic under the null hypothesis. If the observed value of the test statistic is very
unlikely under H0 — lower or equal than a predefined significance level α ∈ (0, 1) — the
null hypothesis is rejected in favor of the alternative hypothesis.

For parametric tests it is sometimes possible to derive this distribution analytically6,
based on the assumed data distribution and known parameters of this distribution.
However, in most cases the distribution of the test statistic can only be approximated
via asymptotic arguments. This is possible especially for test statistics which are based
on sums of random variables.

Let us consider the problem of testing hypotheses about the expected value of a
distribution F with finite expectation and non-zero variance. The key theorem that
facilitates arriving at a useful distribution for a test about the mean is the Central Limit
Theorem. The classical form can be stated in the following way7:

Theorem 4.1 (Classical Central Limit Theorem).
Let X̄N be the arithmetic mean of the first N of a sequence of independent and identically
distributed scalar random variables X1, X2, . . .. Let us further assume that EY 2

i < ∞
(meaning that the data are drawn from a distribution with finite expectation µ and

variance σ2), and let FN denote the cumulative distribution function (cdf) of
√
N X̄N−µ

σ
,

then

FN(x)
N→∞−−−→ Φ(x), ∀x ∈ R,

where Φ(x) denotes the cdf of a standard Gaussian random variable. Note that the result
also holds when σ is unknown, but can be replaced by a consistent estimator.

To conduct a hypothesis test about the test statistic of the mean, we use Theorem
4.1 to approximate the distribution of X̄N by a Gaussian distribution. The correctness
of this approximation increases as N increases. This statement about the approximate
distribution of the mean of samples of size N can be given as follows:

X̄N
app∼ N (µ,

σ2

N
). (4.1)

5Following Larsen and Marx [2012], we define as test statistic any function of the observed data whose
numerical value dictates whether H0 is accepted or rejected.

6If this is possible, the corresponding test is usually called exact.
7Formal derivations and proofs for several variants of the asymptotic argument can be found in van der

Vaart [1998], Chapter 2.
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It is important to stress that the approximate normal distribution of the mean X̄N as
stated in (4.1) follows from Theorem 4.1, irrespective of the shape of the distribution
from which the samples X1, X2, . . . are drawn.

Let us assume that we know the our data were drawn from a distribution with standard
deviation σ, and that we want to test if the mean µ of this distribution equals µ0 or not.
Then, the null hypothesis reads

H0 : µ− µ0 = 0,

and the alternative hypothesis is

H1 : µ− µ0 6= 0.

For concreteness, let us use an example from Cohen [1995] where we know σ = 50 and
we want to test if the expected value of the data generating distribution is µ0 = 25. To
test this hypothesis, we sample 100 observations from which we estimate a mean x̄8 of
15, yielding a Z-score9 of

Z =
√
N
x̄− µ0

σ
=
√

100
15− 25

50
= −2.

Let us further assume that we want to control the Type I error10 at α = .0511. Figure 4.1
shows the shape of a standard normal distribution, which is the approximate distribution
of our test static under the null hypothesis. Based on the nature of our hypothesis pair
and our choice of α, we can partition the range of our test statistic in two regions. One
is called the acceptance region which comprises all observable values of the test statistic
that are deemed compatible with the null hypothesis. The second region is called the
rejection region. This region is the set of all observable values of the test statistic which
are deemed incompatible with the null hypothesis. When we observe a value in this set,
we decide to reject the null hypothesis in favor of the alternative. The rejection region is
constituted by the tails of the distribution, which for our test is (−∞,−1.96] ∪ [1.96,∞).
In our case, the observed value Z = −2 is in the rejection region, so we know that
obtaining this result by chance under H0 is less than 5%. Thus we decide to reject H0 at
an α = 0.05 level and call the difference between x̄ and µ0 statistically significant.

A hypothesis test like the previous is called a two-sided test because the alternative
hypothesis encompasses both possibilities µ < µ0 and µ > µ0. If it only encompasses

8In this case, x̄ serves as a estimator for µ. This usage is justified by the law of large numbers. To
stress this point some authors use the symbol µ̂N instead of x̄N .

9According to our definition of test statistic, following Larsen and Marx [2012], both x̄ and Z qualify
as test statistics.

10Type I error means that we decide to reject the null hypothesis based on our test, but actually the
null hypothesis is the correct model.

11This means that given the null hypothesis is correct, we want to set the probability that our test
makes a Type I error at 5%. If the null hypothesis contains more than one alternative, then α bounds
the supremum of the probability that our test makes a Type I error of more than 5%. The ability to
control the Type I error probability at a nominal rate is one of the most important properties of a
statistical significance test.
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Figure 4.1.: Critical region of two-tailed Z-test.

one of these, the corresponding test is called one-sided. Let us stay in the setting of the
previous example, but now we are interested in testing whether µ is less than µ0. The
corresponding hypotheses pair reads:

H0 : µ ≥ µ0

H1 : µ < µ0.

The test statistic is identical to the two-sided test, but the rejection region is different.
As shown in Figure 4.2, we can put the total mass of α in the left tail, instead of splitting
it as for a two-sided test. Thus our rejection region now is (−∞,−1.64]. Again, the
observed value Z = −2 is in the rejection region, and we therefore decide to reject the
null hypothesis and assume the alternative to be correct.

Discussion. The workings behind the Z-test are similar to any parametric significance
test. For a given test statistic, we need to know its sampling distribution. For the
sum-based test statistic of the mean and for large enough sample sizes, we know that we
can approximate the sampling distribution via a normal distribution by the Central Limit
Theorem. Thus, for NLP and data science applications where the standard evaluation
metric is based on a mean of sample evaluations, the family of approximate Z-tests
allows us to test the statistical significance of result differences between performance
evaluation of machine learning models.

One problem of applying the Central Limit Theorem to NLP and data science applica-
tions is the assumption of independence of the samples for which the test statistic of the
mean is calculated. This assumption is often violated in NLP and data science data if
test sets consist of sentences of the same document.12

12The problem of clustered test samples is to be distinguished for another type of independence violations
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Figure 4.2.: Critical region of left-tailed Z-test.

Another problem is the precise understanding of the phrase ”mean of samples” that
defines the test statistic in the Central Limit Theorem. This term applies to test statistics
in NLP and data science that are calculated as means of evaluation scores that have been
calculated separately for each sentence in a test set. Examples are accuracy scores for
SOFA score prediction as used in Chapter 2, or the TER score [Snover et al., 2006] that
we used to evaluate machine translation systems in Chapter 3. In general, any evaluation
score that is computed as an average over sentence-level evaluation scores qualifies as
a ”mean” test statistic to which the Central Limit Theorem applies. Thus, no matter
what the distribution of the sentence-wise evaluation score is, a significance test like the
Z-test will be applicable to the test statistic of the mean of sentence-wise scores over the
test set.

The story is different for corpus-wise evaluation measures such as BLEU [Papineni
et al., 2002] that are computed on a corpus level, i.e., by accumulating all statistics
for n-gram precision and brevity penalty over the whole test set and then combining
these statistics in nonlinear way. In a similar way, corpus-level versions of precision,
recall, or F1-score, where statistics on true positives, false positives, and false negatives
are accumulated over the test items and then pro-rated, are nonlinear combinations of
test statistics. Thus, even if the basic test statistic of n-gram counts, true positives, or
false positives are normally distributed by virtue of being sums over statistics over test
items, the nonlinear combination of normal distributions at the corpus level is no longer
a proper mean test statistic in the sense of the Central Limit Theorem.

discussed in Yeh [2000]. These concern positive correlations between pairs of systems, e.g., a baseline
and a refined system, for which significance of result differences is to be assessed. Yeh [2000] suggests
tests for matched pairs as remedy. The model-based significance test discussed in the following can
be seen as an instance of a matched-pair test.
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To summarize, since many standard performance evaluation measures in NLP and
data science do not qualify as ”mean of samples”, techniques for statistical significance
testing will be needed that can estimate sampling distributions for other test statistics,
without reference to the Central Limit Theorem.13 We will describe two such significance
tests in the next section.

4.2. Sampling-Based Significance Tests

4.2.1. Bootstrap Resampling

Bootstrap resampling has become a very popular technique for statistical significance
testing in NLP and data science due to is ability to construct sampling distributions
for virtually any test statistic, without knowing the its true sampling distribution and
without making assumptions about the parametric distribution of the population. It has
been developed in biostatistics [Efron and Tibshirani, 1993] and quickly been adopted in
the machine learning community [Hastie et al., 2001]. In the following, we will restrict
our attention to nonparametric bootstrap resampling, and refer to this technique with
the shorthand ”the bootstrap

The intuition behind the bootstrap can be explained by the simplified principle that
the sample itself is a representative “proxy” for the population, and that therefore a
sampling distribution of the test statistic can be estimated by repeatedly sampling (with
replacement) from the sample itself. In the following, we will consider bootstrap methods
for the test statistic of the difference in corpus-level performance evaluation scores SA−SB

on a test set for machine learning models A and B. The null hypothesis is that the
scores of systems A and B are random samples from the same distribution. First, the
actual test statistic is computed on the test data. Next, the sample mean of the test
statistic is computed on the bootstrapped data, i.e., the test statistic is computed on
bootstrap samples of equal size to the test set, and averaged over bootstrap samples. In
order to compute the sampling distribution of the test statistic under the null hypothesis,
we employ the “shift” method described in Noreen [1989]. Here it is assumed that the
sampling distribution of the null hypothesis and the bootstrap sampling distribution
have the same shape but a different location. The location of the bootstrap sampling
distribution is shifted so that it is centered at the location where the null hypothesis
sampling distribution should be centered. This is achieved by subtracting the expected
value of the score difference, estimated by the sample mean of the test statistic on the
bootstrap samples, from each of its values. Then, a p-value is computed directly from the
percentage of trials where the (shifted) test statistic is greater than or equal to the actual
statistic. Thus we directly compute the probability of obtaining a sample result under
the null hypothesis that is as extreme or more extreme than the score difference observed

13The problem of corpus-level measures versus sentence-level measures often leads to confusion in
attempts to match evaluation metrics to significance tests. For example, in the matching table of
Chapter 3 of Dror et al. [2020], only sentence-level test statistics can be matched to parametric tests
like the t-test, however, this assumption is not made explicit.
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on the original test set. In accordance to standard practice in statistical significance
testing, it is common to assess statistical significance at a given α level if the p-value
is less than or equal to α. However, it is considered good practice to report p-values
directly and treat them as the smallest α at which statistical significance can be assessed
[McShane et al., 2019].

Pseudocode sketching a two-sided bootstrap test of significance of evaluation score
differences is given below:

Algorithm 4.1 (Bootstrap Test).

Given test set outputs (A0, B0) = (ai, bi)
N
i=1, where ai is the output

of system A, and bi is the output of system B, on test instance i.
Compute score difference ∆S0 = S(A0)− S(B0) on test data.
For k = 1, . . . , K:

Generate bootstrap dataset Sk = (Ak, Bk) by sampling N examples
from (ai, bi)

N
i=1 with replacement.

Compute score difference ∆Sk = S(Ak)− S(Bk) on bootstrap data.

Compute ∆Sk = 1
K

∑K
k=1 ∆Sk.

Set c = 0.
For k = 1, . . . , K:

If |∆Sk −∆Sk| ≥ |∆S0|
c+ +

p = c/K.
Reject null hypothesis if p is less than or equal to specified rejection level α.

Discussion. The key assumption of the bootstrap can be described formally with
Canty et al. [2006] as the bootstrap substitution principle. This principle states that
an approximation of a probability distribution of the quantity u(Y, F ), where Y =
(Y1, Y2, . . . , YN) is randomly sampled from F , can be constructed by replacing F by a
resampling model F̂ from which samples Y ∗ are drawn such that

P{u(Y, F ) ≤ u|F} ≈ P{u(Y ∗, F̂ ) ≤ u|F̂}. (4.2)

A standard nonparametric resampling model is the empirical distribution function F̃ which
estimates the distribution F by assigning probability 1/N to each sample Yi, i = 1, . . . , N .
The representativeness of the sample that is fundamental to the bootstrap can be
measured by the size of the approximation error in the bootstrap substitution principle
as the sample size N goes to infinity. This is called bootstrap consistency in Canty et al.
[2006]. Bootstrap methods can be inconsistent if the left-hand side and the right-hand
side of the bootstrap substitution equation (4.2) do not converge to the same value, no
matter how large the sample size is. Berg-Kirkpatrick et al. [2012] have shown that
p-values computed on bootstrap samples from one test set may not be indicative of true
result differences on another test set if there is a large domain shift between the test sets.
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This can be interpreted as an extreme case of inconsistency that is problematic for any
statistical significance test, however, bootstrap inconsistency can result from complex
interactions of resampling schemes, test statistics, and data distributions. Canty et al.
[2006] describes various diagnostics for various types of bootstrap inconsistencies that
are usually ignored in NLP and data science applications.

In contrast to our goal of incorporating randomness due to meta-parameters or test
data into significance testing, bootstrap tests are usually applied to a single test set on
which a pair of selected systems is to be compared. Sellam et al. [2021] presented a
so-called ”multi-bootstrap” technique that resamples both from random seeds and from
instances of the test set, in order to estimate the significance of the result difference
between average performance evaluation scores of two systems. In this setup, the more
powerful and thus preferred paired design is only possible if random seeds are identical
for compared systems, e.g. in fine-tuning setups. The unpaired design is more flexible,
however, it suffers the usual loss in power since it has to assume zero covariance between
the performance evaluation scores of the compared systems.14

4.2.2. Permutation Tests

The permutation test, also known as the (approximate) randomization test, dates back
to Fisher [1935]. Similar to the bootstrap test, it is based on random sampling, however,
it does not make an assumption of representativeness of the test sample that can be
problematic in NLP data. Instead, it directly tests the weak assumption that two machine
learning systems are related without, in fact, making an assumption about the population
distribution of the evaluation scores either.

The null hypothesis of the permutation test is that systems A and B are identical.
Thus, under the null hypothesis, outputs for the same input are exchangable, i.e., any
output produced by one of the systems on a test sentence could have been produced just
as likely by the other system. So shuffling the sentence-wise outputs between the two
systems with equal probability, and recomputing the test statistic, allows approximating
a p-value by computing the percentage of trials where the test statistic computed on the
shuffled data is greater than or equal to the test statistic computed on the test data.

For a test set of N sentences there are 2N different ways to shuffle the sentence-wise
outputs between the two systems. If all permutations are considered, the randomization
test is exact. Approximate randomization produces a subset of all possible shuffles,
however, the more shuffles that are evaluated, the better the approximation of the p-value.
Again, it is considered good practice to report p-values directly instead of just assessing
statistical significance at a given α-level [McShane et al., 2019].

A sketch of an algorithm for a two-sided approximate randomization test for the
significance of performance score differences is given below:

14See, for example, the discussion of the two-sample t-test versus the paired sample t-test in Cohen
[1995].
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Algorithm 4.2 (Permutation Test).

Given test set outputs (A0, B0) = (ai, bi)
N
i=1, where the first element

in the ordered pair (ai, bi) is the output of system A, and the second
element is the output of system B, on test instance i.
Compute score difference ∆S0 = S(A0)− S(B0) on test data.
Set c = 0.
For r = 1, . . . , R:

Compute shuffled outputs (Ar, Br) where for each i = 1, . . . , N :

swap(ai, bi) =

{
(ai, bi) with probability 0.5,

(bi, ai) with probability 0.5.

Compute score difference ∆Sr = S(Ar)− S(Br) on shuffled data.
If |∆Sr| ≥ |∆S0|
c+ +

p = c/R.
Reject null hypothesis if p is less than or equal to specified rejection level α.

Discussion. The permutation test rests on the simple and powerful principle of stratified
shuffling [Noreen, 1989] that allows generation of null-hypothesis conditions by shuffling
outputs between the two systems at strata that partition the data. Based on this principle,
the inventors of the bootstrap rate the permutation test as follows:

When there is something to permute, [...] it is a good idea to do so, even
if other methods like the bootstrap are also brought to bear. [Efron and
Tibshirani, 1993]

This statement showcases both the advantages and disadvantages of the permutation test.
In order to generate null-hypothesis conditions, strata for shuffling outputs between the
two systems have to be identified. Strata are given naturally in NLP test sets where each
sentence corresponds to a stratum at which the system outputs can be permuted. These
outputs can be sentence-wise evaluation scores or count statistics that are accumulated
over the whole test corpus, for example, sentence-level TER [Snover et al., 2006] or
sentence-level n-gram counts in BLEU [Papineni et al., 2002], respectively. If the goal
is to compare two machine learning systems on the same sentences of a test set, a
permutation test is easily implemented and it allows to assess statistical significance
with great power (i.e., high probability of rejecting H0 when it is false). The latter has
been shown formally in a comparison of permutation tests to parametric tests for large
samples [Hoeffding, 1952].

However, the stratified shuffling principle can also be a restriction since sampling
without replacement does not simulate drawing samples from an infinite population. The
permutation test thus does not allow approximating a sampling distribution of the test
statistic, as is done in the bootstrap test. The upside of not making the assumption of
representativeness of the sample is that the permutation test makes fewer Type I errors
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(i.e., rejecting H0 when it is true) and fewer Type II errors (i.e., not rejecting H0 when it
is false) than the bootstrap if consistency of the latter is not given. This has been shown
experimentally in Noreen [1989] and Riezler and Maxwell [2005].

To sum up, the permutation test seems to be the method of choice if the only goal
is to assess the statistical significance of a difference in evaluation scores between two
systems on the same test set. However, in order to apply a permutation test as described
above, a single configuration of meta-parameters has to be chosen for each system, and a
single dataset needs to be fixed. This scenario is too restrictive in light of the work that
we presented in Chapter 3, since it ignores known sources of variance in performance
evaluation of machine learning models. A notable exception is the approach of Clark
et al. [2011] that includes multiple optimizer replications into a permutation test by
permuting like hypothesis between systems and optimization runs. This procedure retains
the power of the permutation test as long as small numbers of pairwise comparisons
are conducted, but it increases the probability of Type I errors for larger numbers of
pairwise comparisons.15 A more flexible framework for statistical significance testing
that allows multiple comparisons without increased Type I error, and enables an elegant
incorporation of variability due to optimization and test data, is the model-based approach
to significance testing. We will describe this technique in the next section.

4.3. Model-Based Significance Testing

The central property of model-based significance testing is the fact that the hypotheses to
be tested concern parameters of probability distributions. This allows us to fit probability
models such as LMEMs to performance evaluation data of two machine learning models,
and to compare the two underlying systems via the corresponding parameter in the
LMEMs trained on the respective evaluation results. The test of choice in this paradigm
is the (generalized) likelihood ratio test that dates back to Neyman and Pearson [1933].
We will follow the exposition in van der Vaart [1998].

4.3.1. The Generalized Likelihood Ratio Test

The hypotheses to be tested in a likelihood ratio test are hypotheses about parameters
of probability distributions. Suppose we observe a sample Y = (Y1, Y2, . . . , YN) from a
probability distribution pθ, and we wish to test the null hypothesis

H0 : θ ∈ Θ0,

against the alternative hypothesis

H1 : θ ∈ Θ1.

15See, for example, the discussion of multiple comparisons in Larsen and Marx [2012].
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If both hypotheses consist of single points θ0 and θ1, then a most powerful test can be
based on the test statistic of the likelihood ratio∏N

i=1 pθ0(Yi)∏N
i=1 pθ1(Yi)

,

by the Neyman-Pearson lemma [Neyman and Pearson, 1933].
An extension of the Neyman-Pearson theory replaces single points by the supremum

over a restricted parameter space Θ0 for the null hypothesis, and by the supremum over
the whole parameter space Θ = Θ0 ∪Θ1 for the alternative hypothesis, leading to the
generalized likelihood ratio statistic

supθ∈Θ0

∏N
i=1 pθ(Yi)

supθ∈Θ

∏N
i=1 pθ(Yi)

=
l0
l1
,

that builds the basis of the generalized likelihood ratio test. Larsen and Marx [2012]
describe the test in the following succinct form:

Algorithm 4.3 (Generalized Likelihood Ratio Test (GLRT)).
Reject H0 if the generalized likelihood ratio statistic

λ =
l0
l1
,

has a value

0 < λ ≤ λ∗

where λ∗ is chosen such that P (0 < λ ≤ λ∗|H0 is true ) = α for a significance
level α.

The null hypothesis of the GLRT is the assumption that the restricted model l0 explains
the data adequately. Since 0 < λ ≤ 1, the intuition behind the test is that values of λ
close to 1 suggest that the restricted model assumed under H0 explains the data as well
as a more complex model assumed under H1, thus H0 should be accepted for such values
of λ. Conversely, values of λ close to 0 suggest that the data are not very compatible
with the parameter values in the restricted model, thus H0 should be rejected in favor of
H1, which more adequately explains the data.

In order to determine the critical value λ∗ for a given significance level α, we need
to know the distribution of the test statistic λ. Fortunately, our test statistic is based
on maximum likelihood estimates of parameters of a probability distribution — in our
case, we will employ the parametric family of LMEMs that we already used for reliability
assessment in Chapter 3 — and we can fall back on an asymptotic result similar to
the Central Limit Theorem, this time a theorem showing the asymptotic normality of
maximum likelihood estimates.16

16Derivations and proofs for variants of the asymptotic argument can be found in van der Vaart [1998],
Chapter 7.
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Figure 4.3.: p-value based on χ2 distribution.

Theorem 4.2 (Asymptotic Distribution of Maximum Likelihood Estimators).
Let Y = (Y1, Y2, . . . , YN) be sample from a probability distribution pθ, and define the
log-likelihood of the sample as `N(θ) = log

∏N
i=1 pθ(Yi). If the maximum likelihood

estimator θ̂ exists as the solution to the equation ∂
∂θ
`N (θ) = 0, in addition to second and

third derivatives of `N (θ), then the asymptotic distribution of [N · IN (θ)]1/2(θ̂ − θ) is the
standard normal distribution, where IN (θ) = Epθ [( ∂

∂θ
lN (θ))2] is the Fisher information of

the sample Y about θ.

Similar to the Central Limit Theorem 4.1, we consequently get a statement on the
approximate distribution of θ̂ being the multivariate normal distribution with mean θ
and variance [N · IN(θ)]−1:

θ̂
app∼ N (θ, [N · IN(θ)]−1). (4.3)

Using Theorem 4.2, it can be shown that under the null hypothesis the distribution
of the statistic −2 log λ is asymptotically chi squared-distributed. This result is due to
Wilks [1938]. We present a derivation of the asymptotic distribution of the likelihood
ratio statistic for the simple case of a single random variable Y and a scalar-valued
parameter θ in Appendix A.3.17 In short, the result states that the random variable W ,
defined as

W = −2 log Λ = 2 log
l1(Y1, . . . , YN)

l0(Y1, . . . , YN)

app∼ χ2
df=k1−k0 , (4.4)

follows a χ2 distribution with k1 − k0 degrees of freedom if the general model yielding l1
has k1 parameters and the restricted model yielding l0 has k0 parameters. This allows

17A detailed proof is given in van der Vaart [1998], Chapter 16.
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us to reject H0 if the observed value w of W is greater than the (1− α)-quantile of the
aforementioned distribution, that is, if the p-value

p := PH0(W > w) (4.5)

is smaller than the rejection level α. The critical region of the χ2 distribution is illustrated
in Figure 4.3. Again, since the p-values can be calculated directly, it is good practice
to report the p-value instead of assessing the statistical significance at a given α-level
[McShane et al., 2019].

4.3.2. Likelihood Ratio Tests using LMEMs

The Nested Models Setup

Let us reconsider the experiments on interactive machine translation by Kreutzer et al.
[2020] that we used to illustrate reliability of model prediction performance in Chapter 3.
The machine learning objective of this study was to fine-tune neural machine translation
systems on either machine-translated sentences annotated with human markings or
human post-edits of machine translations. For the purpose of reliability assessment,
we trained a random-effects-only LMEM on response variables Y consisting of TER
scores for a multitude of RNN models fine-tuned under different meta-parameter settings
evaluated on 1,041 test sentences.18 The purpose of significance testing is to assess the
statistical significance of observed differences in TER scores between the baseline model
and the models fine-tuned on markings or post-edits, respectively.

Let us first have a look at the TER evaluation score in a boxplot shown in Figure
4.4. The horizontal line in the middle of the box marks the median value of the data
points in the specific group. The box indicates the range where the middle 50% of the
data points are located. The vertical lines are called whiskers and serve the purpose
to identify observations with unusually large or small values in the data set (so-called
outliers) which are represented by point-like symbols below or above the whisker. Figure
4.4 shows that the shape of the box plot is rather similar for all three systems, with
the boxplots for “Marking” and “PostEdit” being located slightly below the “Baseline”
boxplot. This means that by central tendency, both feedback methods yield slightly
improved translation quality.

Let us conduct a first-cut analysis of the statistical significance of the observed
evaluation results. We assume that, for the moment, we are only interested in the
statistical significance of the observed result difference between the baseline system and
the model fine-tuned on markings. Since each of the latter RNN models was trained three
times with different random seeds, in a first, conventional approach we simply average
the TER scores for the models trained on human annotations, and assess the statistical
significance of the average result differences to the baseline results. The simplest modeling
approach is to specify an LMEM that realizes a standard linear model as in (4.6) and

18Note that two of the 1,043 test sentences reported in Kreutzer et al. [2020] were duplicates that we
removed in our LMEM experiments.
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Figure 4.4.: Median TER scores for baseline and machine translation systems fine-tuned
on markings or post-edits.

train it on data collected from evaluation scores for both systems. For the response
variable Y consisting of TER scores for each test sentence, we get the following model:

Y = µ+ νm · Im + εresidual. (4.6)

The model specifies a fixed effect µ for the baseline grand mean and uses an indicator
function Im to activate a fixed effect νm that represents the deviation of the fine-tuning
on markings from the baseline. In order to conduct a GLRT, we set up the restricted
model in (4.7), a special case of model (4.6) where the factor νm is restricted to be zero,
and train it on the same data as model (4.6):

Y = µ+ εresidual. (4.7)

This setup of nested models [Pinheiro and Bates, 2000] allows us to conduct a GLRT
with the restricted model (4.7) representing the null hypothesis, the more general model
(4.6) representing the alternative hypothesis, and model (4.7) being nested within model
(4.6). In our case, the null hypothesis model (4.7) assumes that there is no difference in
the TER scores between the systems, and thus it estimates the mean TER score over
the performance evaluation data of baseline and fine-tuned models. The alternative
hypothesis model (4.6) specifies a fixed effect that represents the deviation of the TER
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scores of the fine-tuned model from the baseline, and the GLRT assesses the statistical
significance of this fixed effect.

An analogous setup could be done for a system fine-tuned on post-edits by setting up
a linear model (4.8) that specifies a fixed effect νp for the deviation of fine-tuning on
post-edits to the baseline.

Y = µ+ νp · Ip + εresidual. (4.8)

As null hypothesis model we can use a model of the form (4.7) and train it on data of
evaluation scores for baseline and post-edit tuned systems. This model then estimates
the mean TER score over these data. Then we conduct a GLRT with the null hypothesis
model (4.7) being nested within the alternative hypothesis model (4.8).

If our interest is only to test the hypothesis whether all three systems perform equally,
we could set up a model (4.9) that incorporates both fixed effects νm and νp that are
activated by indicator functions Im and Ip, respectively, representing the deviation of the
fine-tuning on markings to the baseline, and the deviation of the fine-tuning on post-edits
to the baseline. This model is trained on evaluation results of all three systems.

Y = µ+ νm · Im + νp · Ip + εresidual. (4.9)

In order to test whether all three systems perform equally, we need to retrain the null
hypothesis model (4.7) on the same data from all three systems. This model then
estimates the mean TER score over the evalution scores produced by all three models.

On the data from Kreutzer et al. [2020], a GLRT which compares model (4.9) against
the restricted model (4.7) yields a p-value of 0.517. According to a standard significance
level of 0.05, this result is too high to reject the null hypothesis that the three systems
have equal performance. Do we have to conclude that the difference in performance
evaluations between the three systems is not statistically significant? Or are our linear
models too simple to adequately analyze our performance evaluation data? We will see
that two important modifications to our setup that utilize the full power of LMEMs will
yield a completely different picture than our first-cut analysis.

Multiple Comparisons and Meta-Parameter Variation

First, we realize that the simple linear models do not correctly represent the design of
the experiment. Kreutzer et al. [2020] evaluated the three systems on the same sentence,
once for the baseline system, and three times for each of the fine-tuned systems (one
replication for each of three random seeds). Thus each sentence was translated seven
times in total. The simple linear models are instead based on a design that assumes
that each system was evaluated once on a disjoint set of sentences. This forced us to
average over replications, thereby losing useful information contained in the repeated
measurements.

LMEMs allow us to better reflect the experiment design and to leverage this information
by adding a random effect νs for each sentence. The repeated measurements allow us
to group the systems at the sentence level. Technically such a model treats sentences
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as random samples from a larger population and it incorporates an individual baseline
deviation for each sentence. Thus the model can decompose the total variance in three
blocks: systematic variance due to the fixed effects of the model, variance due to sentence
heterogeneity, and unexplained residual variance. This allows us to reduce the as of yet
unaccounted residual variance by attributing a variance component σ2

s to variance between
sentences. If we think of the residual error as noise that masks the signal of measured
performance scores, we can effectively perform a noise reduction that increases the power
of our tests to detect significant differences. We can also see that decreasing residual
variance and increasing substantial variance corresponds to increasing the reliability
coefficient ϕ of a model, thus relating increased reliability to increased power.

A second problem results from the multiple pairwise comparisons that would have to
be done if we wanted to assess statistical significance of pairwise result differences, i.e.,
baseline vs. marking, baseline vs. post-edit, and marking vs. post-edit. This well-known
problem of multiple comparisons yields an increase of the probability of Type I errors, i.e.,
the probability of randomly assessing statistical significance for result differences in k-fold
pairwise comparisons grows exponentially in k. Recall that for a pairwise comparison of
systems at α = 0.05 means that the probability of incorrectly rejecting the null hypothesis
that the systems are not different be less than 0.05. For a probability αc of incorrectly
rejecting the null hypothesis in a specific pairwise comparison, the probability αe of at
least once incorrectly rejecting the null hypothesis in an experiment involving k pairwise
comparisons is

αe = 1− (1− αc)k.

For large values of k, the probability of concluding result differences incorrectly at
least once is undesirably high. For example, in benchmark testing of 15 systems,
15(15− 1)/2 = 105 pairwise comparisons will have to be conducted. At a per-comparison
rejection level αc = .05 this results in an per-experiment error αe = .9954, i.e., the
probability of at least one spurious assessment of significance is 1− (1− .05)105 = .9954.
One possibility to reduce the likelihood that one or more differences assessed in pairwise
comparisons is spurious is to run the comparisons at a more stringent per-comparison
rejection level. A standard remedy for this problem is the Bonferroni correction (see
DeGroot and Schervish [2012], Chapter 11) that corrects the per-comparison significance
level αc

NC
by the number of pairwise comparisons NC . This will work fine for a small number

of pairwise comparisons. For example, it would require a reasonable per-comparison
rejection level αc = 0.0167 to reach a per-experiment error rate less than αe = 0.05 for
3 pairwise comparisons, but it would require reducing αc to the point where a result
difference has to be unrealistically large to be significant for larger numbers of pairwise
comparisons.

Another solution to control the per-experiment error rate is the Tukey test that
assumes that all mean factors are from same normal population as null hypothesis
H0 : µ1 = µ2 = . . . = µk, and conducts a significance test against the alternative
hypothesis H1 : µi 6= µj, for all i 6= j in a single procedure (see Larsen and Marx [2012],
Chapter 12).
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Table 4.1.: Effect of model design on variance and significance.

design general model restricted model residual p-value

average replications
Eq. (4.9) Eq. (4.7) 0.2576 0.517

per random seed
group replications

Eq. (4.10) Eq. (4.11) 0.05905 < 0.0001
at sentence level

Let us now incorporate the two discussed modifications — adding random effects for
repeated measurements on sentences and conducting pairwise comparisons in a single
procedure — into our model of the performance evaluation experiment for interactive
machine translation. This will lead to an LMEM (4.10) that includes a random effect νs
for sentences and fixed effects νm and νp. Remember that νm and νp are activated by
indicator functions Im and Ip, respectively, and represent the deviation from the baseline
for fine-tuning on markings or post-edits:

Y = µ+ νs + νm · Im + νp · Ip + εresidual. (4.10)

The restricted model (4.11) representing the null hypothesis in the GLRT only specifies
a global mean µ and a sentence-specific deviation νs, while restricting the other factors
to zero:

Y = µ+ νs + εresidual. (4.11)

As repeated in Table 4.1, we found that a comparison of models (4.9) to (4.7) where
we averaged replications of measurements per random seed without utilizing a random
sentence variance effect νs, yielded a p-value of 0.517. This was too high to reject the null
hypothesis that the three systems have equal performance. Adding the random effect νs
reduces the residual error from 0.2576 to 0.05905, and yields a p-value < 0.0001 for a
comparison of models (4.10) to (4.11). Thus we can assess statistical significance of the
difference between the three systems if sentence variance is taken into account.

Furthermore, the pairwise comparison shown in Table 4.2 yields significant differences
between baseline and fine-tuning on markings (p < 0.0001), between baseline and fine-
tuning on post-edits (p < 0.0001), but not for the comparison between fine-tuning on
markings and fine-tuning on post-edits (p = 0.1625).

Dependency of Significance on Data Properties

In a further step, we would like to investigate if perhaps difference between baseline and
fine-tuning modes, or even between fine-tuning modes, is dependent on certain properties
of the test data. Similar to the analysis of the interaction of the meta-parameter
delta scheme with sentence length presented in Chapter 3, we will investigate whether
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Table 4.2.: p-values for pairwise TER differences between systems on test set.

p-value

baseline - marking < 0.0001
baseline - post-edit < 0.0001
marking - post-edit 0.1625

Figure 4.5.: TER scores for baseline and machine translation systems fine-tuned on
markings or post-edits, plotted against source sentence length.

the choice between baseline or fine-tuning modes depends on the length (measured in
words) of the source language sentence. To get a first impression, we create a scatter
plot with source sentence length on the x-axis and TER of the translation on the y-axis
for all systems. Figure 4.5 shows that for all three systems, the contour lines of the point
cloud are rather similar, and the relation between TER and source sentence length is
increasing. We see an increase in TER for short sentences (< 15 words), followed by a
rather flat section for sentences of length 15− 55 words, and a steep increase for very
long sentences (> 55 words). To emphasize this point, we classify the sentence length in
three categories “short” (< 15), “typical” (15− 55), and “very long” (> 55) and create
boxplots of the data. Figure 4.6 highlights the observation that most of the improvement
gained from human feedback happens for very long sentences, and to a lesser degree
for very short ones, with no noticeable improvement for sentences of moderate length.
Furthermore, we see that while the three systems behave nearly identical for typical
sentences, they show noticeable differences for short and very long sentences.

In order to test this hypothesis, we extend model (4.10) by including a fixed effect νn
for sentence length, and fixed effects νnm and νnp to analyze interactions between system
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Figure 4.6.: TER scores for baseline and machine translation systems fine-tuned on
markings or post-edits, plotted against three bins of source sentence length.

choice and sentence lengths, yielding model (4.12):

Y = µ+ νs + νn + (νm + νnm) · Im + (νp + νnp) · Ip + εresidual. (4.12)

A GLRT that compares model (4.12) to a null hypothesis model of the form

Y = µ+ νs + νn + εresidual. (4.13)

shows that there is a statistically significant difference (p < 0.0001) in evaluation
scores between the three systems depending on the sentence length bins. This result is
highlighted in the interaction plot given in Figure 4.7 that directly displays the estimated
group means of TER score for each of the bins of source sentence length.

Figure 4.7 clearly shows that the biggest improvements are gained for long sentences,
and fine-tuning on post-edits seems to outperform fine-tuning on markings for the
experiment of Kreutzer et al. [2020]. In order to test this set of hypotheses, we perform
pairwise comparisons between systems nested within source sentence length levels. These
results are shown in Table 4.3.

In comparison to the result in Table 4.2 that we obtained without grouping sentences
into length bins, Table 4.3 shows statistically significant differences between TER scores of
marking and post-edit systems on very long sentences . Furthermore, for short sentences
both systems show a significant improvement over the baseline model, but for typical
sentences only the improvement of the marking system over the baseline is statistically
significant. These results suggest that there is no uniform superiority of one feedback
mode over the other and that an investigation into the interaction of feedback modes
with data properties reveals important patterns.
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Figure 4.7.: Interaction plot of estimated TER scores for baseline and machine translation
systems fine-tuned on markings or post-edits and bins of source sentence
length.

Table 4.3.: p-values for pairwise differences between systems on source sentences of
different length.

short typical very long

baseline - marking < 0.0001 0.0175 0.0003
baseline - post-edit 0.0002 0.2098 < 0.0001
marking - post-edit 0.2683 0.3052 0.0252

Discussion. A unique theoretical feature of the proposed model-based approach to
significance testing is that it mutes the old question of which significance test is appro-
priate for which evaluation measure. In a model-based paradigm, one does not have
to bother with the distributional properties of complex evaluation measures since they
are not treated directly as test statistics of a significance test. Instead, they are simply
the response variables in the performance evaluation data on which LMEMs are trained.
We can reuse already existing performance evaluation data, obtained by repeated mea-
surements of evaluation scores of model variants, and perform a significance test on the
parameter of an LMEM that incorporates the variability in the models and data.

Independent of the evaluation measure used, the test statistic of the GLRT is based on
the parameter estimates of the LMEM trained on the performance evaluation data. It is
a well-established result from maximum likelihood theory that the parameter estimates
obtained by maximizing the likelihood asymptotically follow a normal distribution.
Based on this fact it can be shown that the generalized likelihood ratio test statistic
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asymptotically follows a χ2 distribution, which in turn allows to compute p-values for
wide range of hypotheses including the typical A-B testing hypotheses pair. It should be
mentioned that, while our model-based approach used GLRTs, other significance test on
fixed effects of LMEMs are possible. For example, Pinheiro and Bates [2000] recommend
F -tests or t-tests to avoid anti-conservative behavior of GLRTs, while Robertson and
Kanoulas [2012] or Barr et al. [2013] do not find a Type I error inflation for GLRTs. In
a similar way, model-based significance testing does not depend on the use of LMEMs,
but other mixed effects models such as generalized additive mixed models [Wood, 2011]
would also fit our purpose.

The key practical feature of the proposed model-based approach is that it unifies special-
purpose significance tests for particular evaluation metrics, meta-parameter variations,
and multiple test data into a single framework for hypothesis testing. Special-purpose
approaches have been presented by Dror et al. [2019] to compare models under different
meta-parameter settings by comparing their empirical score distribution, or by Dror et al.
[2017] to perform multiple-hypothesis testing for multiple datasets. The idea of treating
test data as random effects and thus increasing the power of statistical significance testing
has already proposed by Robertson and Kanoulas [2012] for the area of information
retrieval. However, the general applicability of LMEMs and GLRTs for significance
testing under variations of meta-parameters and data properties has not yet been fully
recognized in the wider community of NLP and data science research.

Lastly, our proposed frame work exhibits an intimate relationship between significance
testing and reliability analysis where increased reliability of models implies higher power
in detecting significant differences between them. Out of the main factors that influence
the power of a test [Card et al., 2020, Larsen and Marx, 2012] — the significance level
α, the variance of an effect, and the test set size — only the test set size is usually
tuned by the experiment (dataset) designer. A reliability analysis provides a tool that
allows identifying possible reasons for low power by an analysis of variance of model
components.

4.4. Notes on Practical Usage

The statistical significance tests presented in this chapter — and more variants of
parametric, nonparametric, and sampling-based test procedures — have been discussed
elsewhere, for example, in Dror et al. [2020]. Our main contribution is to put some of
the earliest significance tests — the permutation test [Fisher, 1935] and the likelihood
ratio test [Neyman and Pearson, 1933, Wilks, 1938] — into the limelight and showcase
their general applicability to any task and evaluation metric in NLP and data science.

The permutation test achieves this goal without loss of power compared to parametric
tests in standard settings [Hoeffding, 1952], and with the only limitation that it requires
the selection of a pair of models under fixed meta-parameter settings for which the
significance of a result difference is to be assessed. A notable exception is the permutation
test of Clark et al. [2011] that allows incorporating multiple optimizer runs, however,
this framework is restricted to small numbers of pairwise comparisons, it lacks the ability
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to differentiate significance testing according to properties of the test data.
A unified framework for statistical significance testing under variations on meta-

parameter or data properties is offered by the model-based framework of GLRTs. The
main idea of model-based significance testing is using statistical models like LMEMS,
trained on test data performance evaluation scores of machine learning systems, and
apply the nested models setup of GLRTs for significance testing. This setup allows the
incorporation of variability into significance testing by clustering repeated measurements
obtained from different meta-parameter configurations on the sentence level. Thus, it
allows accounting for uncertainty introduced by the random nature of the training process.
We showcased this advantage on the example of multiple training runs starting from
different random seeds. The clustering of repeated measurements on the sentence level is
suitable when (A) system are trained with the same meta-parameter values, (B) systems
are trained with different meta-parameter values, and (C) if the meta-parameters of the
systems differ.

The distinctive advantage of the model-based framework compared to extensions of
bootstrap [Sellam et al., 2021] or permutation [Clark et al., 2011] tests to incorporate
meta-parameter variation is that it enables analyzing significance of result differences
conditional on data properties. We showcased this advantage by using a test set in
our interactive machine translation example [Kreutzer et al., 2020] that consists of 30
selected TED talks on a variety of topics, and by analyzing significance separately for
data properties like source sentence length. The latter analysis has the same goal as using
heuristic test data splits, for example, based on sentence length [Søgaard et al., 2021], for
improved performance evaluation of machine learning models. However, our approach
allows the incorporation of factors of interest in the design of an LMEM trained on the
whole performance evaluation dataset, instead of requiring separate runs of training and
evaluation on the individual data splits.

The clustering of repeated measurements on the sentence level is a default option that
can be extended if systems share other facets of variation, for example, if they are minor
variations of each other and share other meta-parameter facets. Furthermore, similar
to analyzing the dependency of significance on test sentence properties, indicators for
test sets themselves can be used to analyze the dependency of significance on domains or
topics of test sets.
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A. Mathematical Background

A.1. Generalized Additive Models

A.1.1. General Form of Model

Generalized additive models (GAMs) are an additive combination of smooth func-
tions fk(xk) of input features xk (usually called predictor covariates by statisticians).
These smooth functions are called feature shapes in the machine learning literature (or
smoothers in the statistical community). They decompose a multivariate function into
one-dimensional components fk that can be nonlinear themselves. GAMs are called
interpretable1 models since the contribution of each feature xk to the prediction can be
interpreted by visualizing feature shapes via plotting fk(xk) against xk.

Given a data point (xn, yn) from data set {(xn, yn)}Nn=1, where x = (x1, . . . , xp) is a
p-dimensional real-valued vector of covariates, xk denotes a component of x, Y is a real
valued random response variable from the exponential family, and g(·) is a nonlinear link
function, the general form of a GAM can be given as follows:

g(E[Y |x]) =

p∑
k=1

fk(xk) +
∑
i 6=j

fij(xi, xj).

There are many ways to realize a GAM. For example, Hastie and Tibshirani [1990]
utilize nonparametric regression models, Lou et al. [2012] use boosted regression trees,
Agarwal et al. [2020] introduce restrictions to neural models to obtain a GAM-like
structure, and Wood [2017] realize feature shapes via penalized regression splines. The
latter approach is of particular interest since it is an immediate extension of linear
regression that inherits important theoretical results that are useful for our purpose.

A regression spline function of order q is a piecewise polynomial function obtained
by dividing the domain of the function into contiguous intervals, and representing the
function by a separate polynomial of order q in each interval. The points where the
piecewise polynomial connect are known as knots, and the pieces are connected in such a
way that the derivatives of the spline exist at the knots, i.e., with respect to derivatives
a spline behaves similar to an ordinary polynomial of degree q over its entire domain. In
the context of smoothing, one usually restricts attention to cubic splines.

A key advantage of the spline approach is the fact that each spline function fk can be

1For the purpose of this exposition we say that a GAM is interpretable if all feature shapes can be
visualized in two dimensions.
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represented as a linear combination of so called base functions bj:

fk(·) =
d∑
j=1

βjbj(·) = b(·)β, (A.1)

where b(·) = [b1(·), b2(·), . . . , bd(·)], and β = [β1, β2, . . . , βd]
>.

The base functions are known in advance, and in order to fit a spline to data, one
has to choose appropriate weights βj. Conceptually, this is very similar to expressing a
vector in a vector space explicitly in terms of a basis. In order to incorporate a spline
in a model, one only has to substitute the basis representation in the GAM definition
(bivariate functions are dropped for notational convenience):

g(E[Y |x]) =

p∑
k=1

dk∑
j=1

βkjbkj(xk).

It is easy to see that splines are in essence linear smoothers, and that a GAM is in essence
a linear model for the regressors bkj(xk), k = 1, . . . , p, j = 1, . . . , dk, which are nonlinear
functions themselves. Note that only the composed feature shape is interpretable and
not the the individual βkj or the base functions bkj.

A.1.2. Example

We consider a GAM for n = 1, . . . , N data points, using the same piecewise cubic spline
functions for two features k = 1, 2. Following Hastie and Tibshirani [1990], the base
functions for knots ξi, i = 1, . . . , I can be defined as follows:

bk1(xnk) = 1,

bk2(xnk) = xnk ,

bk3(xnk) = (xnk)2,

bk4(xnk) = (xnk)3,

bki(x
n
k) = (xnk − ξi)3

+, i = 1, . . . , I,

where (a)+ := max(a, 0).
For a Gaussian response variable Y n, two input features x1 and x2, and the identity

link function, the GAM takes the following form:

Y n = β11 + β12x
n
1 + β13(xn1 )2 + β14(xn1 )3 +

I∑
i=1

β1(i+4)(x
n
1 − ξi)3

+

+ β21 + β22x
n
2 + β23(xn2 )2 + β24(xn2 )3 +

I∑
i=1

β2(i+4)(x
n
2 − ξi)3

+

+ εn

= Gnβ + εn,
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where εn ∼ N (0, σ2),

Gn =
[
b11(xn1 ) b12(xn1 ) . . . b1(I+4)(x

n
1 ) b21(xn2 ) b22(xn2 ) . . . b2(I+4)(x

n
2 )
]
,

and

β =



β11

β12

. . .
β1(I+4)

β21

β22

. . .
β2(I+4)


.

The design matrix for the full dataset is written as
Y 1

Y 2

...
Y N

 =


G1

G2

...
GN

β +


ε1

ε2

...
εN

 ,
or, equivalently, as

Y = Gβ + ε.

A.1.3. Parameter Estimation

Consider following functional minimization problem, involving a general model h which
is a twice differentiable function of a single covariate x for N datapoints:

min
h∈H

N∑
n=1

(yn − h(xn))2 + λ

∫
(h′′(x))2dx,

where λ ∈ R+ and
∫

(h′′(x))2dx is a measure for the smoothness of a function over its
domain — the wigglier the function the larger this quantity becomes. It turns out that the
cubic spline function with a natural spline base is the unique minimizer of this problem.
This corresponds essentially to cubic splines with a knot placed at each data point, thus
yielding N base functions in the notation of equation (A.1). Parameter estimation can be
performed by penalized least squares estimation (PLSE) for the following optimization
problem:

β̂ = argmin
β∈Rs

∥∥Y −Gβ
∥∥2

+

p∑
k=1

λk

∫
(f ′′k (x))2dx,
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Figure A.1.: This plot shows the data and fitted splines for a simulated toy example.
The data were generated according to Y = cos (X) + ε where ε ∼ N (0, 1).
The points display the sampled data points (n = 200) and the red solid line
the true E[Y |X]. The dashdotted line is the estimated spline when λ was
chosen by cross validation. We see that this estimator resembles the truth
very closely, even for this very noisy data. The dotted line displays the
estimated spline when λ is thousand times larger than the cross validated
one. We see that this spline is more or less constantly zero, a result we
would have obtained if we had applied ordinary linear regression to analyze
this data. On the other hand, if we choose λ a thousand times smaller, than
the estimated spline (dotted line) seems to follow the general pattern but is
heavily shaped by erratic patterns in the data.
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where s =
∑p

k=1 dk and λk ∈ R+ are tuning parameters that determine the weight of the
smoothness penalties for the individual feature shapes and G is the basis matrix. Given
data {(xn, yn)}Nn=1, for a model with a single covariate and natural splines, G has the
form of an N ×N matrix

G := [bj(x
n)]j,n=1,...,N ,

and the smoothness is measured by∫
(f ′′(x))2dx = β>Ωβ.

The N ×N -matrix Ω is called the penalty matrix and defined as

Ω := [

∫
b′′s(x)b′′t (x)dx]s,t=1,...,N .

This reduces the minimization problem to the following form (note that λ is a scalar for
the single covariate in our example):

min
β∈RN

∥∥Y −Gβ
∥∥2

+λβ>Ωβ.

Given the similarity of this objective function to the one that arises in ordinary least
squares regression, it is no surprise that the PLSE estimator for this problem is

β̂ = (G>G + λΩ)−1G>y.

Thus, by equation (A.1), the estimated feature shape is

f̂(·) = b(·)(G>G + λΩ)−1G>y.

One can see that the actual solution depends crucially on the choice of λ. Larger values
for λ penalize functions with a lot of curvature dramatically, so that the final solution
will be very similar to a line. On the other hand, if λ is chosen too small, the resulting
spline will accurately follow the datapoints. The result is a wiggly function that heavily
overfits the data. An illustrative example for this is given in Figure A.1.

Furthermore, the actual model degrees of freedom are controlled by λ. Thus, instead
of simply counting the number of free parameters defined by the architecture of a GAM,
one computes effective degrees of freedom by taking the trace of the PLSE estimator (see
Wood [2003]).

Estimation methods for the value for λ are cross validation [Wood, 2017], or marginal
likelihood estimation, in tandem with estimation of β [Wood et al., 2016]. For a deeper
treatment of smoothers and estimation of GAMs, see Hastie and Tibshirani [1990], Wood
[2017].
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A.2. Linear Mixed Effects Models

A.2.1. General Form of Model

A linear mixed effects model (LMEM) is an extension of a standard linear model that
allows a rich linear structure in the random component of the model, where effects other
than those that can be observed exhaustively (so-called fixed effects) are treated as
a random samples from a larger population of normally distributed random variables
(so-called random effects).

Given a dataset of N input-output pairs {(xn, yn)}Nn=1, the general form of an LMEM
is

Y = Xβ + Zb + ε,

where X is an (N × k)-matrix and Z is an (N ×m)-matrix, called model- or design-
matrices (both are known), which relate the unobserved vectors β and b to Y. β is a
k-vector of fixed effects and b is an m-dimensional random vector called the random
effects vector. ε is an N -dimensional vector called the error component. The random
vectors are assumed to have the following distributions:

b ∼ N (0, ψθ),

ε ∼ N (0,Λθ),

where ψθ and Λθ are covariance matrices parameterized by the vector θ. The definition
of an LMEM implies a definition of the distribution of the data vector Y. In the context
of the LMEM theory, we consider three important distributions, the first one of which is
the distribution of Y|b. Obviously, when we fix b, the only random component left is ε.
Thus the conditional distribution of Y given b is

Y|b ∼ N (Xβ + Zb,Λθ).

This distribution is the basis for the derivation of the so called mixed model equations or
Henderson equations which provide estimators for the unknown quantities β and b.

The second distribution of importance is the unconditional distribution of Y. We
defined Y to be a linear mapping of the independent zero mean Gaussian variables b
and ε. Thus Y is also a Gaussian with expected value Xβ. Since the variance can be
written as V(Zb) = ZψθZ

>, we get

Y ∼ N (Xβ,ZψθZ
> + Λθ).

Note that b doesn’t occur in this distribution, instead random effects enter the distribution
only via the covariance matrix ZψθZ

>. This reveals one of the main usages of mixed
models, namely the convenient modelling of complex covariance structures when the data
were not generated in the usual i.i.d. sampling fashion.

To complete our enumeration of important distributions, we derive the joint distribution
of b and Y. For this purpose, we simply stack b and Y together in a vector. Because both
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variables are multivariate Gaussians, the resulting vector is also a multivariate Gaussian,
where the expected values as well as the block diagonal parts of the covariance matrix
are inherited from b and Y. Note that the covariance of b and Y is Cov(b,Y) = ψθZ

>

and let V = ZψθZ
> + Λθ, then

[
b
Y

]
∼ N (

[
0

Xβ

]
,

[
ψθ ψθZ

>

Zψθ V

]
).

Finally let us say some words on the usage of LMEMs. As already mentioned, the
most common application of LMEMs is to model complex covariance structures in the
data when the usual i.i.d. assumptions fail to be applicable. This is the case, for example,
for repeated or grouped, and thus non-independent, measurements. In this case, LMEMs
provide a neat means to provide correct statistical inference about fixed effects (which is
usually of primary interest to the analyst). Like other linear models, they can also be
used to predict outcomes when the covariates are known. This prediction can be based
on the unconditional distribution of Y or, when then random effects are also known, on
the conditional distribution Y|b. Predictions based on the latter are usually associated
with a smaller prediction uncertainty (via different covariance matrices). Furthermore,
very much like Bayesian or other generative models, LMEMs can be used to generate
synthetic data. A special case of LMEMs are models where X = 0 and which therefore
do not contain fixed effects. These models are called random effect models or variance
component models. Their purpose is to partition the total observed variance of the
outcome according to different sources. One application of these models are reliability
studies.

A.2.2. Example

Let us illustrate an LMEM by setting up a model for the analysis of the data in the
hypothetical ”lexical decision” experiment of Barr et al. [2013]. In this experiment
four strings of characters were presented to four human subjects which had to decide
whether or not the string forms an English word. The time from stimulus presentation
to subject response (henceforth response time) was measured. The strings belong to two
categories which are assumed to have an impact on the response time. For simplicity let
us assume that string 1 and 2 belong to category A, and strings 3 and 4 to category B.
The experiment was carried out to test this assumption.

For the analysis of these data one has to build a statistical model incorporating the
variables of interest. The most basic model we could start with is

ysi = β0 + β1xi + εsi,

where ysi denotes the response time of subject s for character string i, xi encodes the
category of character string i (where 0 represents category A and 1 category B), and

εsi
iid∼ N (0, σ2

error) is a random error component. The parameter β0 is called the intercept.
A simple calculation shows that β0 = E[Y |xi = 0] is the expected response time for items
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of category A. The parameter β1 is called slope, and again a similar calculation shows
that β1 = E[Y |xi = 1] − E[Y |xi = 0]. It represents a measure of the difference of the
expected response time for strings of category B versus strings of category A, and thus is
the main quantity of interest for the analysis of this experiment.

As Barr points out, this model can not be a correct representation for the data
generating mechanism of our experiment. A careful reading of the model definition reveals
that we have assumed an error component that is independent of the measurements,
which implies that the observations yi are independent of each other. Obviously, the
experimental setup violates this implication because we take repeated measurements
from subjects and strings. Furthermore, the actual subjects and strings used in our
experiment are just samples from larger populations, and we are not really interested
in obtaining a fixed effect-like estimate for the expected response time of subject s or
item i (nor is it possibly to do so with the data collected in this experiment). But we
can account for the repeated measurements by incorporating appropriate random effects
to model the covariance between measurements. In order to specify the structure of the
random effects, Barr argues that it is reasonable to assume that there exist individual
differences between subjects when processing strings from category A and B, and that
these differences can be different for both categories. He also argues that some strings
can be processed faster than others. Therefore, he proposes the following model

ysi = β0 + bsubjects + bitemi + (β1 + bslopes )xi + εsi,

where the symbols used in the simpler model retain their meaning, and bsubjects is a
random variable that represents the idiosyncratic deviation of subject s from β0 (the
overall expected response time for strings of category B), and bitemi represent item specific
deviations from this expectation. These two random variables modify the intercept of
the model and are therefore called random intercepts in the mixed models literature.
The random variable bslopes is the subject specific deviation from the global slope β1 and
is called a random slope. All the b are random variables, so we need to specify a the
distribution for them. Let bsi := (bsubjects , bslopes , bitemi )>, then following Barr, we define

bsi
iid∼ N (0,

 σ2
subject σsubject, slope 0

σsubject, slope σ2
slope 0

0 0 σ2
item

),

where σ2
subject, σ

2
slope, and σ2

item are the respective variances of the random variables, and
σsubject, slope denotes the covariance of the two random effects for each subject.

Let us proceed to write the complete model for the experimental data so that we can
see how X, Z, Λθ, ψθ and θ actually look like. Let us start by stacking the four model
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equations for a subject s together


ys1
ys2
ys3
ys4


︸ ︷︷ ︸

ys

=


1 0
1 0
1 1
1 1


︸ ︷︷ ︸

F

[
β0

β1

]
+


1 0 1 0 0 0
1 0 0 1 0 0
1 1 0 0 1 0

︸︷︷︸
S

1 1 ︸ ︷︷ ︸
I

0 0 0 1



bsubjects

bslopes

bitem1

bitem2

bitem3

bitem4

+


εs1
εs2
εs3
εs4


︸ ︷︷ ︸
εs

.

The matrix F encodes presence or absence of the fixed effects β0 and β1 in the equations.
Its first column corresponds to the intercept, which is present in all of the four equations,
and thus it contains only 1s. The second column is associated with the slope, which is
only present when the items belong to category B. The second term on the right-hand
side represents the random effects. The first two random effects bsubjects and bslopes are
subject specific and their presence in the model equations is given by S. Recall that
bsubjects is a random intercept and bslopes a random slope, specific for subject s. The second
block of random effects concerns the items. Each equation belongs to one item, thus each
has a unique item specific random intercept. This is ensured by the diagonal matrix I.

For the final model, we have to put the four blocks for each subject together.


y1

y2

y3

y4


︸ ︷︷ ︸

Y

=


F
F
F
F


︸︷︷︸

X

[
β0

β1

]
︸︷︷︸
β

+


S 0 0 0 I
0 S 0 0 I
0 0 S 0 I
0 0 0 S I


︸ ︷︷ ︸

Z



bsubject1

bslope1

bsubject2

bslope2

bsubject3

bslope3

bsubject4

bslope4

bitem1

bitem2

bitem3

bitem4


︸ ︷︷ ︸

b

+


ε1
ε2
ε3
ε4


︸ ︷︷ ︸
ε

.

Because every subject has to respond to every item, the final fixed effect design matrix X
is simply a stack of four F matrices. For the random effects, we have to assure that each
subject receives its own intercept and slope parameter. Therefore, we have to extend the
vector b and impose a block diagonal structure for the subject dependent random effects
in the random effects design matrix. To finalize the design matrix for the random effects
Z, we have to extend each block-row with a diagonal matrix I.

In order to complete the model, we need to specify the covariance matrix for the
random effects ψθ and the error component Λθ. When we look at b, we see that it is
composed of four subject specific blocks, each with a covariance matrix

Σθ
subject :=

[
σ2
subject σsubject, slope

σsubject, slope σ2
slope

]
),
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and one block for the items. By design of the experiment, the items are generated (or
drawn, in a probabilistic parlance) independent of each other. For the multivariate
normal distribution, independence of components is equivalent to zero covariance between
the components. Thus the covariance matrix for the item block of b looks like

Σθ
item :=


σ2
item 0 0 0
0 σ2

item 0 0
0 0 σ2

item 0
0 0 0 σ2

item

 .
By design of the experiment, the subjects are also independent of each other, thus we can
stack the individual covariance matrices together in a block diagonal fashion, yielding

ψθ =


Σθ

subject 0 0 0 0
0 Σθ

subject 0 0 0
0 0 Σθ

subject 0 0
0 0 0 Σθ

subject 0
0 0 0 0 Σθ

item


as the covariance matrix for b. The last model component we need to specify is the
covariance matrix for ε. Recall that we had to introduce random effects in the model to
ensure independence between observations, so that we can now make an i.i.d. assumption
for εsi. Consequently, the covariance matrix for the error component is

Λθ = σ2
error


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .
A final look at all the covariance matrices show us that they are determined by the

four terms σ2
error, σ

2
subject, σ

2
slope, σ

2
item and σsubject, slope. Putting them together in a single

parameter vector θ = (σ2
error, σ

2
subject, σ

2
slope, σ

2
item, σsubject, slope)

> finalizes our description.

A.2.3. Parameter Optimization

In principle there are two ways to calculate maximum likelihood estimators for an LMEM.
First, we present a conceptually simple approach based on the distribution p(Y|β, θ).
Let us assume that θ is known, so that V = ZψθZ

> + Λθ is known, then

p(Y|β, θ) =
1√

|V|(2π)N
exp(−1

2
(Y −Xβ)>V−1(Y −Xβ)).

The maximum likelihood estimator is found by optimizing the log-likelihood objective
(terms and factors not involving β are dropped)

`(β) = −1

2
(Y −Xβ)>V−1(Y −Xβ).
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This is a simple convex optimization problem similar to the PLSE used for GAMs, with
the solution

β̂ = (X>V−1X)−1X>V−1Y.

If we want to obtain estimates (also called predictions) for the random effects, we estimate
Eb|Y=y[b]. Recall that the joint distribution of b and Y is[

b
Y

]
∼ N (

[
0

Xβ

]
,

[
ψθ ψθZ

>

Zψθ V

]
),

which yields for the conditional expectation of b given Y = y, by definition of the
conditional expectation of multivariate Gaussians, the following expression:

Eb|Y=y[b] = (ψθZ
>V−1)(Y −Xβ).

Substituting β̂ for β we obtain the following estimator for b:

b̂ = (ψθZ
>V−1)(Y −Xβ̂).

The estimated values obtained via the approach given above are identical to the
estimates of a more complex estimator called the Henderson equations (or mixed model
equations, see Henderson et al. [1959]). They are based on the distribution p(Y|b,β, θ)
and allow estimating β and b simultaneously, and assume in general that θ is unknown.
The advantage of the Henderson equations is that they allow a computationally more
efficient estimation since only the inversion of matrices of much smaller dimension than
V is required. In general, when θ is unknown, it needs to be replaced by an estimator.
There are a variety of different techniques to do so, and the inclined reader is referred to
Demidenko [2013], McCulloch and Searle [2001], Pinheiro and Bates [2000], West et al.
[2007], Wood [2017] for an extensive elaboration of these.

A.3. The Distribution of the Likelihood Ratio Statistic

A.3.1. Score Function and Fisher Information

A key concept in likelihood-based statistical methods is the score function. Let Y be a
random variable distributed according to pθ(y), and let `(θ) := log pθ(y). Then the score
function is defined as

S(θ) :=
∂

∂θ
`(θ).

The maximum likelihood estimator θ̂ is thus the solution to the score equation which is
defined as

S(θ = θ̂) = 0. (A.2)
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The Fisher information I(θ) of Y is defined as

I(θ) := Eθ[S(θ)2] =

∫
S(θ)2pθ(y)dy. (A.3)

Under the mild assumption that the order of integration and differentiation can be
reversed, I(θ) can be written as the variance of the score function:

I(θ) := Vθ[S(θ)]. (A.4)

This can be shown by the following calculations:

Eθ [S(θ)] = E
[
∂

∂θ
`(θ)

]
=

∫ [
∂

∂θ
`(θ)

]
pθ(y)dy

=

∫ [
∂

∂θ
log pθ(y)

]
pθ(y)dy

=

∫ [ ∂
∂θ
pθ(y)

pθ(y)

]
pθ(y)dy

=
∂

∂θ

∫
pθ(y)dy

=
∂

∂θ
1 = 0.

The equivalence of equations (A.4) and (A.3) follows since

Vθ[S(θ)] = Eθ[S(θ)2]− Eθ[S(θ)]2

= Eθ[S(θ)2]− 0.

Given that `(θ) := log pθ(y) is twice differentiable in θ, another useful equivalence of I(θ)
can be shown:

I(θ) = −Eθ[
∂2

∂θ2
`(θ)]. (A.5)

The second derivative of `(θ) is

∂2

∂θ2
`(θ) =

∂2

∂θ2
log pθ(y)

=
pθ(y) ∂2

∂θ2
pθ(y)−

[
∂
∂θ
pθ(y)

]2
[pθ(y)]2

=
∂2

∂θ2
pθ(y)

pθ(y)
−
[
∂

∂θ
`(θ)

]2

=
∂2

∂θ2
pθ(y)

pθ(y)
− [S(θ)]2 .

117



Taking expectations and assuming that the order of integration and differentiation can be
reversed, we see that first term cancels, and we end up with an equivalence of equations
(A.5) and (A.3):

Eθ
[
∂2

∂θ2
`(θ)

]
=

∫ [
∂2

∂θ2
pθ(y)

]
dy − I(θ)

= 0− I(θ).

A.3.2. Taylor Expansion and Asymptotic Distribution

Assume θ0, θ̂ ∈ R to be scalars indicating our null hypothesis and alternative hypothesis,
respectively. Furthermore, assume a random variable Y with distribution pθ(y), as above.
The likelihood ratio statistic can then be written as follows:

W = −2 log Λ = −2 log
pθ0(y)

pθ̂(y)
= 2

(
`(θ̂)− `(θ0)

)
.

The central argument employed in Wilks [1938] is to replace `(θ0) by its quadratic
Taylor expansion around the maximum likelihood estimator θ̂. Let us first consider the
case of a single observed sample point:

W = 2
(
`(θ̂)− `(θ0)

)
≈ 2

(
`(θ̂)− `(θ̂)− (θ0 − θ̂)

∂

∂θ
`(θ̂)− 1

2
(θ0 − θ̂)2 ∂

2

∂θ2
`(θ̂)

)
= (θ̂ − θ0)2 ∂

2

∂θ2
`(θ̂).

The result follows by the score equation (A.2). For N i.i.d observations, `(θ̂N) =∑N
n=1 `yi(θ̂N) :=

∑N
n=1 log pθ̂N (yi). Hence, we get the following approximation:

W ≈ (θ̂N − θ0)2

N∑
n=1

∂2

∂θ2
`yi(θ̂N)

=
(√

N(θ̂N − θ0)
)2
(

1

N

N∑
n=1

∂2

∂θ2
`yi(θ̂N)

)
p−−−→

n→∞

(√
N(θ̂N − θ0)

)2

I(θ0).

The result follows since the empirical Fisher information converges in probability to the
Fisher Information Matrix I(θ0). An application of Theorem 4.2 then lets us state the
asymptotic distribution of the likelihood ratio statistic as follows:

W
app∼ χ2

df=1.

For more information on likelihood-based statistical methods and related asymptotic
results, the reader is referred to Davison [2003], Pawitan [2001], van der Vaart [1998].

118



Bibliography

Agarwal, R., Frosst, N., Zhang, X., Caruana, R., and Hinton, G. E. (2020). Neural
additive models: Interpretable machine learning with neural nets. In Proceedings of
the ICML Workshop on Human Interpretability in Machine Learning, virtual.

Agrawal, A., Batra, D., Parikh, D., and Kembhavi, A. (2018). Don’t just assume; look
and answer: Overcoming priors for visual question answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake
City, UT, USA.

Agresti, A. (2002). Categorical Data Analysis. Wiley.

Alvarez-Melis, D. and Jaakkola, T. S. (2018). Towards robust interpretability with
self-explaining neural networks. In Proceedings of the 32nd Conference on Neural
Information Processing Systems (NeurIPS), Montreal, Canada.

Amodio, S., Aria, M., and D’Ambrosio, A. (2014). On concurvity in nonlinear and
nonparameric regression models. STATISTICA, 1:85–98.

Andrews, D. W. (2000). Inconsistency of the bootstrap when a parameter is on the
boundary of the parameter space. Econometrica, 68(2):399–405.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz, D. (2019). Invariant risk
minimization. CoRR, abs/1907.02893.

Artstein, R. and Poesio, M. (2008). Inter-coder agreement for computational linguistics.
Computational Linguistics, 34(4):555–596.

Baayen, R., Davidson, D., and Bates, D. (2008). Mixed-effects modeling with crossed
random effects for subjects and items. Journal of Memory and Language, 59:390–412.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly
learning to align and translate. In Proceedings of the International Conference on
Learning Representations (ICLR), San Diego, CA.

Balzer, W. (1992). The structuralist view of measurement: an extension of received
measurement theories. In Savage, C. and Ehrlich, P., editors, Philosophical and
foundational issues in measurement theory, pages 93–117. Erlbaum.

Balzer, W. and Brendel, K. R. (2019). Theorie der Wissenschaften. Springer.

119



Barr, D. J., Levy, R., Scheepers, C., and Tilly, H. J. (2013). Random effects structure for
confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language,
68(3):255–278.

Barrault, L., Biesialska, M., Bojar, O., Costa-jussà, M. R., Federmann, C., Graham,
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